POSITIVITY AMONG P-PARTITION GENERATING
FUNCTIONS
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ABSTRACT. We seek simple conditions on a pair of labeled posets that deter-
mine when the difference of their (P,w)-partition enumerators is F-positive,
i.e., positive in Gessel’s fundamental basis. This is a quasisymmetric ana-
logue of the extensively studied problem of finding conditions on a pair of
skew shapes that determine when the difference of their skew Schur functions
is Schur-positive. We determine necessary conditions and separate sufficient
conditions for F-positivity, and show that a broad operation for combining
posets preserves positivity properties. We conclude with classes of posets for
which we have conditions that are both necessary and sufficient.
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1. INTRODUCTION

Symmetric functions play a major role in algebraic combinatorics, with positivity
questions being a driving force behind their study. Perhaps the most famous such
positivity result is that the Littlewood—Richardson coefficients cf;l, are non-negative.
Most importantly for us, ¢, arises when we expand a skew Schur function in the

v
Schur basis:

SA/NZZC;\WSV' (1.1)

In particular, sy,, is Schur-positive, meaning it has all non-negative coefficients
when expanded in the Schur basis. Going deeper into this positivity result, can
we say that a given sy, is “more Schur-positive” than some other s,,3? More
precisely, when is s),, — s4/3 Schur-positive? Much attention has been given to
this question, including [BBROG6, BOT14, [DPOT, [FFLP05] [Kir04, [KWvWO08|, [LLT97]
LPPOT, McN14, MvW09, MvW12| [Oko97, RS06l RS10, [TvW18|. Two typical goals
are to determine simple conditions on the shapes of A/u and «/8 that tell us
whether or not sy,,, — sq/g is Schur-positive, and to discover operations that can
be performed on skew shapes that result in Schur-positive differences.

The 21st century has seen a surge in attention given to quasisymmetric functions.
Many of the quasisymmetric results have been motivated by related results in the
symmetric setting, and our goal is to begin to address the quasisymmetric analogue
of the question of Schur-positivity of sy, — s4/5. Given the large amount of work
done on this symmetric question, it is reasonable to expect there to be much scope
in the quasisymmetric analogue, and we do not aim to be comprehensive. One of
our hopes is that this paper will serve as a starting point for further advances.

The description of our quasisymmetric analogue begins with labeled posets (P, w),
which are a broad but natural generalization of skew diagrams A/u. Under this
extension, semistandard Young tableaux of shape A/u are generalized to (P,w)-
partitions, as first defined in [Sta71l [Sta72]. Moreover, the skew Schur function
sx/u 1s generalized to the generating function K(p, for (P, w)-partitions which,
consistent with the literature, we will call the (P,w)-partition enumerator. Exam-
ple below demonstrates that s),, is indeed a special case of K(p,). As we
will see, K(p, is a quasisymmetric function; see [Ges84] and [Sta99, Sec. 7.19] for
further information about K(p .

The “right” analogue of Schur-positivity is not as obvious. Compelling quasisym-
metric analogues of Schur functions include the quasisymmetric Schur functions of
Haglund et al. [HLMvW11l, LMvW13] and the dual immaculate basis of Berg et
al. BBST14]. However, we choose to focus on positivity in Gessel’s fundamental
basis F,, for two main reasons. The first is the appeal and simplicity of the expan-
sion of K(p,,) in the F-basis, which is Theorem [2.5|below due to Gessel and Stanley;
it can be viewed as a quasisymmetric analogue of . Secondly, the F-basis has
shown its relevance in a wide variety of settings. These include understanding equal-
ity of skew Schur functions [McN14], obtaining a positive expansion for genomic
Schur functions [Pec20] which are not Schur-positive in general, and in the realm of
Macdonald polynomials [CM18|, [Hag04, [HHLO5a, IHHLT05b]. The F, also have a
representation-theoretic link: they are the quasisymmetric characteristics of the ir-
reducible representations of the 0-Hecke algebra [DHT02, [DKLT96, [KT97, Nor79).
As one of the two original bases (the other being the monomial basis) from Gessel’s
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(P,w) (@, 7)

FIGURE 1.1. An example of (P,w) <p (Q, 7).

introduction of quasisymmetric functions [Ges84], the F-basis has stood the test of
time and has earned its name of “the fundamental basis.”

Our goal, therefore, is to determine conditions on labeled posets (P, w) and (@, 7)
for K(q,r) — K(pw) to be F-positive, i.e., has only non-negative coefficients when
expanded in the F-basis. In this case, we write (P,w) <p (Q, 7) and refer to <p as
the F-positivity order. An example of this relation is given in Figure We need
to be a little careful since <p is not a partial order as just introduced since there
can be distinct labeled posets that have the same (P, w)-partition enumerator. The
question of determining when K(p ) = K(q ) was first considered in [MWT4] with
important further advances in each of [Fér15l [HT17, [LW20al [LW20b]. So when we
write (P,w) < (Q, 7), we are really considering (P,w) and (Q, 7) as representatives
of their equivalence classes, where the equivalence relation is equality of (P,w)-
partition enumerators. Prior to the present paper, the F-positivity order on labeled
posets (P,w) was considered only in two papers. Lam and Pylyavskyy’s [LPOS]
interest was in comparing products of (P, w)-partition enumerators; in our language,
this means that all their (P, w) have at least two connected components. The second
author [McN14] previously considered skew-diagram labeled posets, as defined in
Example 2.3] below.

Since the corresponding Schur-positivity question from the first paragraph above
remains wide open, it is unsurprising that we do not offer simple conditions that
are both necessary and sufficient for K(p ) <r K(q,r). Instead, after giving pre-
liminaries in Section [2] we provide necessary conditions on (P,w) and (Q, ) for
Kpuwy <r K, in Section These are centered on the ideas of the jump se-
quence and Greene shape of a labeled poset. It turns out that many of our results
are optimally stated using variations of F-positivity such as M-positivity, where
M denotes the monomial basis, and containment of F-supports; see Subsection |2.4]
for the full set of variations we use along with the relationships among them. In
Section [4] we consider operations that can be performed on the Hasse diagram of
a labeled poset (P,w) to produce a new labeled poset (@, 7) that is larger in the
F-positivity order. We show that these operations are exactly those that result in
the set of linear extensions of (P,w) being contained in that of (@, 7). In Section [f]
we consider the operation of poset assembly, which is called the Ur-operation in
[BHK18al BHK18b], and includes disjoint union, ordinal sum, and composition of
posets as special cases. We show that poset assembly does not preserve F-positivity
in the most general possible sense, but we can get substantial results by strengthen-
ing our hypotheses. In Section[6] we consider two classes of posets for which we can
give a simple condition that is both necessary and sufficient for K(p.) <r K(g,r)
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and for variations of this inequality. Both classes involve a maximal chain with all
other edges having one endpoint on this maximal chain. We conclude in Section
with a range of open problems.

Acknowledgements. We are grateful to Christophe Reutenauer for asking the
second author about equality of (P, w)-partition enumerators, of which this project
is an outgrowth. We thank the anonymous referee for helpful comments, including
a reminder of the connection to the 0-Hecke algebra. This paper is based on the
first author’s undergraduate honors thesis at Bucknell University where his research
was funded by the Hoover Math Scholarship and the Department of Mathematics.
Portions of this paper were written while the second author was on sabbatical
at Université de Bordeaux; he thanks LaBRI for its hospitality. We are grateful
to Doriann Albertin, Jean-Christophe Aval and Hugo Mlodecki for pointing out
the error in Section 6.2 of [LM22], which resulted in the correction [LM25]; the
present version is a self-contained corrected version of [LM22]. Computations were
performed using SageMath [Thel9).

2. PRELIMINARIES

In this section, we give the necessary background on labeled posets, (P,w)-
partitions, K(p.), quasisymmetric functions, and F-positivity; more details can be
found in [Ges84] and [Sta99, Sec. 7.19].

2.1. Labeled posets and (P, w)-partitions. Let [n] denote the set {1,...,n} and
let 1™ denote a sequence of n copies of 1. The order relation on the poset P will
be denoted <p, while < will denote the usual order on the positive integers. A
labeling of a poset P is a bijection w : P — [|P|], where |P| denotes the cardinality
of P; all our posets will be finite. A labeled poset (P,w) is then a poset P with an
associated labeling w.

Definition 2.1. For a labeled poset (P,w), a (P,w)-partition is a map f from P
to the positive integers satisfying the following two conditions:

o if a <p b, then f(a) < f(b), i.e., f is order-preserving;

o if a <p band w(a) > w(b), then f(a) < f(b).

In other words, a (P,w)-partition is an order-preserving map from P to the
positive integers with certain strictness conditions determined by w. Examples of
(P, w)-partitions are given in Figure where the images under f are written in
bold next to the nodes. The meaning of the double edges in the figure follows
from the following observation about Definition [2.1l For a,b € P, we say that a is
covered by b in P, denoted a <p b, if a <p b and there does not exist ¢ in P such
that a <p ¢ <p b. Note that a definition equivalent to Definition m is obtained
by replacing both appearances of the relation a <p b with the relation a <p b. In
other words, we require that f be order-preserving along the edges of the Hasse
diagram of P, with f(a) < f(b) when the edge a <p b satisfies w(a) > w(b). With
this in mind, we will consider those edges a <p b with w(a) > w(b) as strict edges
and we will represent them in Hasse diagrams by double lines. Similarly, edges
a <p b with w(a) < w(b) will be called weak edges and will be represented by single
lines.

From the point-of-view of (P, w)-partitions, the labeling w only determines which
edges are strict and which are weak. Therefore, many of our figures from this point
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on will not show the labeling w, but instead show some collection of strict and
weak edges determined by an underlying w. Furthermore, it will make many of our
explanations simpler if we think of w as an assignment of strict and weak edges,
rather than as a labeling of the elements of P, especially in the later sections.
For example, we say that labeled posets (P,w) and (Q,T) are isomorphic, written
(P,w) = (Q, ), if there exists a poset isomorphism from P to @ that sends strict
(respectively weak) edges to strict (resp. weak) edges. We will be careful to refer
to the underlying labels when necessary.

FIGURE 2.1. Two examples of (P,w)-partitions.

If all the edges are weak, then P is said to be naturally labeled. In this case, we
typically omit reference to the labeling and so a (P, w)-partition is then traditionally
called a P-partition (although sometimes the term “P-partition” is used informally
as an abbreviation for “(P,w)-partition,” as in the title of this paper). Note that if P
is a naturally labeled chain, then a P-partition gives a partition of an integer, while
if P is an antichain, a P-partition gives a composition of an integer; interpolating
between partitions and compositions was a motivation for Stanley’s definition of
(P, w)-partitions [Sta7ll, [Sta72].

2.2. The (P,w)-partition enumerator. Using z to denote the sequence of vari-
ables x1, 22, ..., we can now define our main object of study.

Definition 2.2. For a labeled poset (P,w), we define the (P, w)-partition enumer-
ator Kp.) = K(pu)(z) by

-1 —1(2
K(P,w)(l') _ Z $\1f ( )Ix\Zf @0 . ’

(P,w)-partition f

where the sum is over all (P, w)-partitions f.

For example, the (P,w)-partition in Figure[2.I(a) would contribute the monomial
231477 to its K(p.). As another simple example, if (P,w) is a naturally labeled
chain with three elements, then Kp,,) = Zigjgk; TiTjTg-

Example 2.3. Given a skew diagram A/p in French notation with n cells, bi-
jectively label the cells with the numbers [n] in any way that makes the labels
increase down columns and from left-to-right along rows, as in Figure a). Ro-
tating the result 45° in a counter-clockwise direction and replacing the cells by
nodes as in Figure b), we get a corresponding labeled poset which we denote
by (Px/u,wx/,) and call a skew-diagram labeled poset. Under this construction,
we see that a (Py/,,w,,,)-partition corresponds exactly to a semistandard Young
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tableau of shape A/u. Therefore K(p, Jwa ) 18 exactly the skew Schur function
$x/u, justifying the claim in the introduction that the study of K ) — K(p.,) is a
generalization of the study of s/, — s4/s-

1123
4|57
-1 |68

FIGURE 2.2. The skew diagram 443/21 and a corresponding la-
beled poset.

2.3. Quasisymmetric functions. It follows directly from the definition of qua-

sisymmetric functions below that K(p, is quasisymmetric. In fact, Kp,, served

as motivation for Gessel’s original definition [Ges84] of quasisymmetric functions.
We will make use of both of the classical bases for the vector space of quasisym-

metric functions. If @ = (a1, a9, ...,ax) is a composition of n, then we define the
monomial quasisymmetric function M, by
_ a2 .k
M, = E x; T, x; k.
11 <i2<...<lp

This monomial basis is natural enough that we can see directly from Definition [2.2
how to expand K(p,,) in this basis.

Proposition 2.4. For a labeled poset (P,w) and a composition o = (a1, ..., ax),
the coefficient of My in Kpy will be the number of (P,w)-partitions f such that

W) =an.. . [f7HE)] = an.

As we know, compositions a = (a1, e, ..., ax) of n are in bijection with subsets
of [n—1], and let S(«) denote the set {a1, a1+ s, ...,a1+as+--+agp_1}. It will
be helpful to sometimes denote M, by Mg(q),,- Notice that these two notations are
distinguished by the latter one including the subscript n; the subscript is helpful
since S(a) does not uniquely determine n.

The second classical basis is composed of the fundamental quasisymmetric func-
tions F, defined by

Fy = Fs(a)n = > Mg, . (2.1)
5(a)CTC[n~-1]

The relevance of this latter basis to K(p,, is due to Theorem below, which

first appeared in [Sta7ll [Sta72] and, in the language of quasisymmetric functions,
in [Ges84].

Every permutation m € S,, has a descent set Des(w) given by {i € [n — 1] :

(i) > 7(i+ 1)}, and we will call the corresponding composition of n the descent

composition of m. Let L(P,w) denote the set of all linear extensions of P, re-

garded as permutations of the w-labels of P. For example, for the labeled poset in
Figure 2.1|(b), £(P,w) = {1324, 1342, 3124, 3142}.
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Theorem 2.5 ([Ges84 [StaT7ll [Sta72]). Let (P,w) be a labeled poset with |P| = n.

Then
K(P,w) = Z FDes(w),n .
TEL(P,w)

Example 2.6. The labeled poset (P,w) of Figure[2.1[a) has £(P,w) = {1324,1342}
and hence

Kpw) = Flaya + Faya
= Fo + F31
=My s+ Mpya+ Muaoya+ Mpsya+2Mp3ya+2M2314
= Mas + M3z + My12 + Mi21 + 2Ma11 + 2M1111-

2.4. Positivity implications. Although our introduction focused on K(g ) —
K (p,., being F-positive, there are some stronger and weaker conditions that are im-
portant for us. First, referring to Theorem a sufficient condition for (P,w) <pg
(Q,7) is that L(P,w) C L£(Q, 7). We will investigate this latter condition in detail
in Section [4] and some of our results in Section [5 will need us to strengthen our
hypotheses by using this linear extension containment.

As follows from , a weaker condition than K (g ) —K(p, being F-positive is
that K (g, )~ K(p) is M-positive, which we denote by (P,w) <js (Q, 7). Moreover,
the F-support of (P,w), denoted suppp(P,w), is the set of compositions « such
that F, appears with nonzero (and hence positive) coefficient in the F-expansion
of K(p.. We define the M -support supp,,(P,w) analogously. For example, the M-
support of the poset from Example is {22,31,112,121,211,1111}. By definition
of these supports and , we get the following set of implications.

[L(Pw) C L@Q,7)]

U
’(P,w) <r (Q,T)‘ = ’suppF(P,w) - suppF(Q,T)‘
J \
’ (Pa w) <wm (QvT) ‘ = ’SUppM(P7 w) c SUPPM(Qﬂ') ‘ (22)

Some of our necessary conditions for (P,w) <p (Q,7) in the next section will
merely require us to assume that supp,,;(P,w) C supp,,(Q,7); we refer to the
latter condition as “M-support containment.”

2.5. Involutions on labeled posets. For the last preliminary, we consider some
natural involutions we can perform on a labeled poset (P,w). Subsets of the set of
these involutions appear previously in, for example, [Ehr96, [Ges90, [LP0S8| Mal93|
MRO5, MRI8] and [Sta99, Exer. 7.94(a)]. First, we can switch strict and weak
edges, denoting the result (P,w). Secondly, we can rotate the labeled poset 180°,
preserving strictness and weakness of edges; we denote the resulting labeled poset
(P,w)*. Observe that these so-called bar and star involutions commute; an example
is given in Figure 2.3]

Although in subsequent sections we will prefer to view these bar and star involu-
tions as described above, it will be helpful for Lemma [2.7] below to formulate them
in terms of their effect on the w-labels. We see that

(Pw) = (P,0),
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o)
AN e
I(m)* j(P, w)"

o\f @ /o

FIGURE 2.3. The bar and star involutions.

where w is defined by
w(a) = [P|+1—w(a)
for all a € P. Let P* denote the 180° rotation (dual) of P, and let a* denote the
image of a € P under this rotation, Then
(Pw)" = (P*,w"),
where w* is defined by
w*(a*) = |P|+ 1 —w(a).
Given Theorem we can determine the effect of these involutions on K(p,.,

by examining their effect on the linear extensions of (P,w). A proof can be found
in [MW14].

Lemma 2.7. Let (P,w) be a labeled poset. Then we have:

(a) the descent sets of the linear extensions of (P,w) are the complements of
the descent sets of the linear extensions of (P,w);

(b) the descent compositions of the linear extensions of (P,w)* are the reverses
of the descent compositions of the linear extensions of (P,w).

*

The usefulness of these involutions stems from the following consequence of The-
orem 2.5l and Lemma 2.7

Proposition 2.8. For labeled posets (P,w) and (Q, T), the following are equivalent:
(a) (Pw) <r (Q,7);
(b) (P.w) <F (Q,7);
(c) (Pw)" <F (Q,7)%;
(d) (Pw)* <r (Q,7)".
In addition, F-support containment is also preserved by the bar and star involutions.

In particular, any condition that is necessary (resp. sufficient) for the inequality
of (a) will also be necessary (resp. sufficient) for the inequalities of (b), (c), and (d).
The equivalence of (a) and (b) in Proposition does not hold if we replace
“<p” with “<jp;” in both inequalities, nor if we replace “F-support containment”
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with “M-support containment.” For example, let (P,w) be a 2-element chain with
a strict edge and let (@, 7) be a 2-element chain with a weak edge. However, we do
get the following result.

Proposition 2.9. For labeled posets (P,w) and (Q,T), we have (P,w) <p (Q,T)
if and only if (P,w)* <p (Q,7)*. In addition, M-support containment is also
preserved under the star involution.

Proof. Referring to Proposition let f be a (P,w)-partition such that |f~1(1)| =
ai,..., |f71(k)] = ax. Each such (P,w)-partition maps bijectively to a (P,w)*-
partition g defined by g(a*) = k + 1 — f(a), where a* € P* is the image of a € P
under the 180° rotation. The key property of g is that |¢~1(1)| = ag,. .., |g7 (k)| =
oy . By Proposition 2:4] and letting o* denote the reversal of «, the coefficient of
any M, in K(p,, is thus equal to the coefficient of M,- € K(p_,)-, from which the
result follows. O

3. NECESSARY CONDITIONS

Our ultimate goal is to determine the full set of relations of the form (P,w) <pg
(Q,7) in terms of simple conditions on (P,w) or (Q,7), along with similar results
for our other ways of comparing (P,w) and (Q, 7) from . To do so, we would
need to know which inequalities do not hold, and necessary conditions give us a
way to find such instances. In the interest of generality, we will state each of our
necessary conditions using the weakest hypothesis from needed.

3.1. Quick observations. First, it is clearly the case that if supp,,(P,w) C
supp,, (@, 7) then |P| = |Q|. Our second observation is almost as simple.

Proposition 3.1. If labeled posets (P,w) and (Q,T) satisfy (P,w) < (Q,T), then
|L(P,w)| < |L£(Q, )]

Proof. Let n = |P|. By Proposition the coefficient of My~ in K(p,, is the
number of (P,w)-partitions f that are bijections to the set [n]. Considering f as
a way to order the elements of (P,w), the coefficient of Mi~» is thus the number of
linear extensions of (P,w), and the result follows. O

The next result answers the question of whether a naturally labeled poset can
be less than a non-naturally labeled poset.

Proposition 3.2. If labeled posets (P,w) and (Q,T) satisfy
supp,, (P, w) C supp,, (@, 7) and (P,w) has only weak edges, then so does (Q, ).

Proof. Observe that (P,w) has only weak edges if and only if there is a (P,w)-
partition that maps all elements to the number 1, meaning that (|P]|) is in the
M-support of (P,w). Thus |P| is in the M-support of (Q,7), and (@, 7) has only
weak edges. O

Of course, Proposition [3.2|remains true if we replace the M-support containment
hypothesis with the stronger condition that suppg(P,w) C suppp(Q,7). Then
applying the bar involution and Proposition 2.8 we get the following corollary: if
suppp(P,w) C suppr(Q,7) and (P,w) has only strict edges, then so does (Q, 7).
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3.2. Orderings on the jump. A more sophisticated tool for deriving necessary
conditions is the jump sequence of a labeled poset, as defined in [MW14]. The jump
of an element of a labeled poset is very similar to the notion of maximum descent
distance from [AB20].

Definition 3.3. We define the jump of an element b of a labeled poset (P,w) by
considering the number of strict edges on each of the saturated chains from b down
to a minimal element of P, and taking the maximum such number. The jump
sequence of (P,w), denoted jump(P,w), is

jump(P,w) = (Jo, - - - Jk),

where j; is the number of elements with jump ¢, and k is the maximum jump of an
element of (P, w).

For example, the posets of Figure both have jump sequence (3,1). There is
an alternative way to think of the jump sequence in terms of the M-support, as
we now explain. The dominance order on partitions of n is well known, and its
definition extends directly to give the dominance order on compositions, denoted
Sdom .

Lemma 3.4. Under dominance order, the mazimum element of both the M -support
and the F-support of a labeled poset (P,w) is the jump sequence of (P,w).

Proof. Consider the greedy (P,w)-partition g, defined in the following way. Choose
g so that |g~1(1)| is as large as possible and, from the remaining elements of P,
lg~1(2)] is as large as possible, and so on. We see that

(g~ W), |9~  (K)]) = jump(P,w)

where k is the maximum jump of an element of (P,w). By Proposition
jump(P,w) is thus in the M-support of (P,w) and, by construction of g, is the
maximum such element under dominance order.

The result for the F-support can be shown directly in terms of linear extensions,
but it follows quickly from what we just proved for the M-support. Indeed, by ,
we know that F,, takes the form M, + > 5 Mp, where every [ is strictly less than
« in dominance order. Therefore the maximum elements in the F-support and
M-support are equal. [

The following result gives our first main necessary conditions.

Corollary 3.5. If labeled posets (P,w) and (Q, T) satisfy suppp(P,w) C suppp(Q,T)
or even just supp (P, w) C 5uPpM(Q7 7), then jump(P,w) <dom jump(Q, 7).

Because of the second sentence in Proposition [2.8] we can get three additional
necessary conditions for suppy(P,w) C suppp(@,7) by applying the bar and star
involutions and then Corollary [3.5

(a) jump((P,w)) <dom jump((Q,7));
(b) jump((P,w)*) <dom jump((Q,7)*);
(C) jump((P,w)*) gdom jump( ) )

By Proposition the inequality in (b) is also a necessary condition for
supp (P, w) C suppy, (Q, 7).
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/|

(P,w) (@, 7)

FIGURE 3.1. (P,w) and (@, 7) have the same jump sequence, but
different jump sequences after applying either the bar or star in-
volution.

Example 3.6. Consider the labeled posets (P,w) and (@, 7) in Figure Even
though their jump sequences are equal, we have jump((P,w)*) = (3,1) whereas
jump((Q,7)*) = (2,2), implying suppp((P,w)*) € suppg((Q, 7)*) or, equivalently,
suppp(P,w) € suppr(Q, 7). Moreover, (P,w) and (@, 7) are actually incomparable

under F-support containment since jump((P,w)) = (2,2) whereas jump((Q, 7)) =
(3,1), so suppp(Q, 7) £ suppp(P,w).

Using an analogous approach, we get that supp,,;((P,w)*) € supp,,;((Q,7)*),
but then we can check computationally that supp,,(Q,7) C supp,;(P,w). This is
one example of the different behaviors of F-support and M-support containments.

As another example of the utility of the extra necessary conditions, for a natu-
rally labeled poset (P,w), we have jump(P,w) = (|P|), which does not give useful
information whereas looking at jump((P,w)) might allow us to draw a conclusion.

Corollary gives us the following necessary condition about maximal chains.

Corollary 3.7. If labeled posets (P,w) and (Q,T) satisfy
suppp(P,w) C suppp(Q, 7), then the mazimum number of strict (resp. weak) edges
in a mazimal chain in (P,w) must be greater than or equal to the mazimum number
of strict (resp. weak) edges in a mazimal chain in (Q,T).

Proof. By Corollary we know that jump(P,w) <gom jump(@,7), in which case
the length of jump(P,w) must be greater than or equal to the length of jump(Q, 7).
Observe that the length of the jump sequence of a labeled poset (P, w) equals 1 plus
the maximum number of strict edges on a saturated chain from a maximal element
down to a minimal element of P.

For the statement about weak edges, apply the bar involution and Proposi-

tion 2.8 O

If we use the weaker hypothesis in Corollarythat supp s (P, w) C suppy, (@, 1),
the first paragraph of the proof still works and we can draw the same conclusion
about the number of strict edges. The (P,w) and (Q,7) mentioned just before
Proposition [2.9) give a counterexample to the statement about weak edges holding
in the case of M-support containment.

Inspired by the unresolved [MWI14, Question 4.4], we are intrigued by the po-
tential for a positive answer to the following question.

Question 3.8. Is Corollary[3.7 true when we remove the requirement that the edges
be strict (resp. weak) and instead consider all the edges on a mazimal chain?

The answer to Question is “yes” when |P| < 6, and in the case of skew-
diagram labeled posets, as follows from [McNI14, Theorem 4.1].
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3.3. Convex subposets and Greene shape. As we saw in the proof of
Lemma we obtain the jump sequence by being greedy starting at the bottom
of the poset. This subsection leads off with the idea of being “even greedier” by
giving ourselves more freedom in where we start. The resulting necessary condition
becomes particularly nice when we apply it to naturally labeled posets.

Recall that a convex subposet S of P is a subposet of P such that if x,y,z € P
with ¢ <p y <p z, then z,z € S implies y € S. A convex subposet of (P,w)
inherits its designation of strict and weak edges from (P,w), and let us say that a
convex subposet is weak (resp. strict) if all its edges are weak (resp. strict).

Proposition 3.9. Suppose labeled posets (P,w) and (Q,7) satisfy supp,,(P,w) C
supp,;(Q, 7). Then, for all i, the mazimum cardinality of a union of i weak convex
subposets of (P,w) must be less than or equal to that of (Q,T).

Proof. Observe that in a labeled poset (P,w), a subposet S forms a weak con-
vex subposet if and only if its elements can all have the same image in some
(P,w)-partition. Therefore, the maximum cardinality of a union of i weak con-
vex subposets of (P,w) is exactly the largest sum o, + --- + «;, of i distinct
elements of «, among all « € supp,;(P,w). The result follows since supp,,(P,w) C

supp (@, 7). 0
As usual, if we use the stronger hypothesis that suppp(P,w) C suppp(Q,T)

and the bar involution, we can draw the analogous conclusion about strict convex
subposets.

Proposition has a particularly appealing consequence in the case of naturally
labeled posets. Inspired by the approach of [LW20a], we consider posets according

to their Greene shape.

Definition 3.10 ([Gre76]). For a poset P and k > 0, let ¢; (resp. aj) denote
the maximum cardinality of a union of k chains (resp. antichains) in P. Then
the chain Greene shape (resp. antichain Greene shape) of P is the sequence \ =
(M, Aa, ..., A¢) where Ay = ¢ — ck—1 (resp, Ay, = ax — ar—1) and £ is the largest
value of k for which A\, > 0.

For example, the poset in Figure has chain Greene shape (4, 2) and antichain
Greene shape (2,2,1,1).

FIGURE 3.2. A poset with chain Greene shape (4, 2) and antichain
Green shape (2,2,1,1).
Greene proved a beautiful property of these shapes.

Theorem 3.11 ([Gre70]). The chain Greene shape and antichain Greene shape of
a poset are both partitions and are conjugates (i.e. transposes) of each other.
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(a) (b) (c)
FIGURE 4.1. An example of redundancy-before-deletion

This theorem together with Proposition leads to the following result.

Theorem 3.12. Suppose naturally labeled posets P and Q satisfy suppp(P) C

suppp(Q). Then -

(a) the antichain Greene shape of P is dominated by that of Q, and
(b) the chain Greene shape of P dominates that of Q.

Proof. Applying the bar involution, our hypothesis is equivalent to having posets
P and () with all strict edges and which satisfy suppz(P) C suppyr(Q) by Propo-

sitio By (2.2), we also have supp,,(P) C supp,,(Q). If we apply Proposi-
5.9 = Dy

tion 3.9} observe that weak convex subposets in P and () are exactly their antichains,
yielding (a).

Theorem and the fact that conjugation of partitions reverses dominance
order imply (b). O

Note that Theorem b) is a significant strengthening of Corollary in the
naturally labeled case. The former also implies that chain Greene shape equality
is a necessary condition for F-support equality, which is [LW20a, Theorem 3.11].

4. LINEAR EXTENSION CONTAINMENT

We now transition to looking at operations we can perform on a labeled poset
(P,w) to yield another labeled poset (@, 7) such that (P,w) <p (Q, 7). Referring to
Theorem or , a condition that implies the desired inequality is £(P,w) C
L(Q, ), which we refer to as “linear extension containment.” The goal of this
section is to determine exactly when linear extension containment occurs.

One way to ensure L(P,w) C L(Q, 7) is to obtain (Q,7) from (P,w) by deleting
an edge in the Hasse diagram of (P, w). However, our computations suggest that this
is a rather coarse operation, by which we mean there are then typically other labeled
posets (R,o) such that £L(P,w) C L(R,0) C L(Q, 7). Fortunately, there is an
operation on Hasse diagrams with finer results that is just a little more sophisticated
than deleting edges.

It will be convenient for the remainder of this section to identify elements of
labeled posets with their labels; for example, 5 <p 2 is expressing a relation between
the elements with w-labels 5 and 2 in some (P,w).

4.1. Redundancy-before-deletion. To describe this finer operation by example,
consider the Hasse diagram of the labeled poset (P,w) in Figure a). Implicit
in this diagram is the relation 1 <p 2, which we add explicitly in Figure b).
Although Figure 4.1(b) is not a bona fide Hasse diagram since it includes this
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redundant edge, it is still a representation of the relations in (P,w). We now delete
the edge 3 <p 2 to obtain the labeled poset (Q,7) in Figure c¢). Since the
diagram in Figure b) encodes the same set of relations among labels as (P,w),
and since (@, 7) is obtained just by deleting edges, we get L(P,w) C L(Q, 7).

We call this operation of adding redundant edges followed by deletion of edges
the redundancy-before-deletion operation. Let us give a general definition of this
operation.

Definition 4.1. We say that a labeled poset (Q, 7) can be obtained from a labeled
poset (P,w) by redundancy-before-deletion if the following property holds: starting
with the Hasse diagram for (P,w), we can add redundant edges and then perform
an ordered sequence of deletions of edges (redundant or not) to yield the Hasse
diagram of (Q, 7).

Implicit in our discussion is that redundant edges are designated as strict or
weak as usual, according to the labels on their endpoints; we will consider a loos-
ening of this designation in Subsection 4.3} To see why ordering the sequence of
deletions is needed in Definition [4.1] see Remark [£.5] It is clear in that if any (Q,T)
is obtained from any (P,w) by redundancy-before-deletion, then £L(P,w) C L(Q, 7).
Redundancy-before-deletion is a finer operation than just deletion: (@, ) in Fig-
ure c) has just one more linear extension than (P,w) in Figure [f.1{a), whereas
just deleting the edge 3 <p 2 from (P,w) would have increased the number of
linear extensions by 2. Another example of redundancy-before-deletion appears in
Figure where the two redundant edges 1 <p 2 and 1 <p 4 have been added to
(P,w) before the deletion of 1 <p 3.

4.2. Linear extension containment implies redundancy-before-deletion.
It is natural to ask the following question: beyond redundancy-before-deletion,
what other operations can we perform on a labeled poset (P,w) to yield another
labeled poset (Q,7) such that L(P,w) C L(Q,7)? The remainder of this section
is devoted to giving a full answer to this question by showing that all such (@, 7)
are obtained from (P,w) by redundancy-before-deletion; see Theorem for the
precise statement.

As a bridge between linear extension containment and redundancy-before-deletion,
we will use the set of all strict relations in (P,w). Formally, we define

S<(P,w) ={(a,b) : a <p b}

and call it the less-than set of (P,w). Recall that we are identifying elements of

(P,w) with their labels, so the elements of the less-than set are ordered pairs of
labels.

Theorem 4.2. Let (P,w) and (Q, T) be labeled posets. The following are equivalent:
(1) L(P,w) € L(Q,7);
(2) S<(Pw) 285(Q,7);
(3) (Q,7) is obtained from (P,w) by redundancy-before-deletion.

Before starting the proof proper of Theorem [4.2] we need some preliminary
lemmas. The first is a general property of linear extensions which is easy to check.

Lemma 4.3. For elements a,b of a labeled poset (P,w), if a £p b then there is a
linear extension in which b appears before a.
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FIGURE 4.2. (Q,7) is obtained from (P, w) by an ordered sequence
of three edge deletions.

The main substance of the proof of Theorem [4.2is showing that (2)=-(3). The
next two lemmas detail how the edges of S.(P,w) can be pared down to get
S<(Q,7) in a systematic way that is consistent with edge deletion and the poset
structure.

Lemma 4.4. Suppose that (P,w) is a labeled poset that includes the relation a <p b.
Then S<(P,w)\ {(a,b)} is a less-than set of a labeled poset if and only if a <p b is
a cover relation of (P,w).

Proof. Let us add in all the reflexive relations (z, x) to the set S« (P,w)\{(a, b)} and
consider whether or not the resulting set is a full set of relations of a poset. Reflex-
ivity and antisymmetry will certainly hold, so we check transitivity, in which case
we can restrict our attention to S<(P,w) \ {(a,b)} without the reflexive relations.

If (a,b) is not a cover relation, then there exists ¢ such that (a,c) and (¢, b) are
in Sc(P,w)\ {(a,b)} but (a,bd) is not. Thus S<(P,w) \ {(a,b)} is not transitively
closed and so is not the less-than set of a labeled poset.

If (a,b) is a cover relation, consider (z,y), (y,z) € S<(P,w) \ {(a,b)}. We know
that (z,z) € S<(P,w) and since (z,z) is not a cover relation, we get (z,z) €
S<(P,w)\{(a,b)}. Thus S<(P,w)\{(a,b)} is the less-than set of a labeled poset. O

Remark 4.5. Note that repeated deletions of cover relations from less-than sets
as in Lemma [4.4] can result in posets that look quite different from the original.
For example, the less-than set of the poset (@, 7) in Figure is obtained from the
less-than set of (P,w) there in the following way:

S<(@,7) = S<(P,w) \ {(2,6)} \ {(2,5)} \ {(4,5)},

where the deletions are performed from left-to-right. Note that the last relation
deleted is not a cover relation in S<(P,w) but is instead a cover relation once the
previous deletion has been performed. This is an example of why ordering the
sequence of edge deletions is important.

Remark suggests that we need to be mindful when talking about deletions
of edges from less-than sets, hence the need for the next lemma.

Lemma 4.6. For labeled posets (P,w) and (Q,7), we have S<(P,w) 2 S<(Q, )
if and only if S<(Q,T) can be obtained from S<(P,w) by an ordered sequence of
deletions of cover relations.
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(a) (b)

FIGURE 4.3. Do these assignments of strict and weak edges come
from an underlying labeling? (The answers are “yes” for (a) but
“no” for (b).)

Proof. Since the “if” direction is clear, we suppose S<(P,w) D S<(Q, 7). Because
of this strict inequality and since cover relations generate the entire less-than set,
there must exist a cover relation a <p b of (P,w) that is not an element of S (Q, 7).
Deleting this cover relation as in Lemma will yield a labeled poset (P’,w’) that
has one less order relation than (P,w), and so S<(P',w’) 2 S<(Q, 7). Repeated
applications of this deletion process will result in S<(Q, 7). ([l

Proof of Theorem[.3 We will prove (1)=(2)=(3)=(1).

To show (1)=-(2), assume that L(P,w) C £(Q,7) and suppose that there exists
(a,b) € S<(Q,7) such that (a,b) € S<(P,w). By Lemma [4.3] there exists a linear
extension m € L(P,w) in which b appears before a. But then m € £(Q, ), which
implies (a,b) € S<(Q,7), a contradiction.

To show (2)=>(3), start with the Hasse diagram for (P,w) and add in every pos-
sible redundant edge; the resulting set of edges will be S« (P,w). Since S<(P,w) 2
S<(Q, 1), we can apply Lemma S<(Q,7) can be obtained from S (P,w) using
an ordered sequence of edge deletions. Then simply delete from S<(Q, 7) all redun-
dant edges in any order to obtain the Hasse diagram for (@, 7). In summary, the
Hasse diagram (Q, 7) is obtained from (P,w) by adding redundant edges followed
by an ordered sequence of deletions of edges, as required.

We have already mentioned the reasons for (3)=-(1): adding redundant edges to
the Hasse diagram of (P,w) doesn’t change the set of linear extensions, nor does
deleting redundant edges, while deleting cover relations adds elements to the set of
linear extensions. Thus £(P,w) C L(Q, 7). O

4.3. Adding redundant edges more freely. In redundancy-before-deletion, the
strictness or weakness of the redundant edges added to (P, w) is determined by the
labeling w. For example, the redundant edge added in Figure b) is weak as
dictated by the labels 1 and 2. However, particularly in Section [6 we want the
freedom to deal with labeled posets where instead of a labeling w being displayed, we
only have some assignment of strict and weak edges consistent with an underlying
w. In this situation, are there any restrictions on the strictness and weakness of
the redundant edges we add? For example, are the strictness and weakness of the
redundant edges in the examples in Figure valid, in the sense that they are
consistent with an underlying labeling?

To state the restriction on the strictness and weakness of redundant edges, we
need to define a bad cycle. Given a Hasse diagram of a poset along with some
redundant edges, and an assignment of strictness and weakness to all the edges,
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build a directed graph by orienting all weak edges upwards and all strict edges
downwards. If the resulting digraph has a directed cycle, then we say that the
assignment of strict and weak edges has a bad cycle. The reader is invited to
construct these digraphs for (a) and (b) in Figure and to refer to these digraphs
in the proof of Proposition [4.7]

Proposition 4.7. Given the Hasse diagram of a poset along with some redundant
edges, an assignment of strict and weak edges is consistent with an underlying
labeling w if and only if the assignment has no bad cycles.

Proof. Let D denote the digraph associated with an assignment of strict and weak
edges to a poset P.

Suppose first that D has a directed cycle a1 — a3 — -+ — ar — a1, and
that the assignment of strict and weak edges comes from a labeling w. Notice that
the digraph is defined so that its edges always point to the higher w-label. Thus
w(ar) <wl(ag) < ... <w(ar) < w(ay), a contradiction.

For the converse, we know D is acyclic, and we will explicitly define a labeling w
of the poset P. Define a new partial order R on the elements of P by saying a <g b
if there is a directed path in D from a to b. We see that R is a partial order, so
it can be given a natural labeling w. These w-labels of the elements of P respect
the assignment of strict and weak edges. Indeed, if the edge a <p b is strict, then
b <rg a, so w(b) < w(a), and similarly for weak edges. O

So given a labeled poset (P,w) we need not just add redundant edges whose
weakness/strictness is determined by the labeling w, but we can more generally add
any redundant edges whose weakness/strictness does not create a bad cycle. We call
the addition of the latter type of edges the generalized-redundancy operation, and
use the term generalized-redundancy-before-deletion for the resulting generalization
of redundancy-before-deletion.

We would like to develop an analogue of Theorem [4.2]for generalized redundancy.
As we will see, the crux of the matter is that generalized-redundancy-before-deletion
applied to (P,w) is equivalent to regular redundancy-before-deletion applied to an
appropriately relabeled (P,w). A relabeling w’ of a labeled poset (P,w) is said
to be consistent if the Hasse diagram of (P,w’) has the same set of weak (resp.
strict) edges as the Hasse diagram of (P,w). Importantly, K(p.) = K(p.- since,
as we observed, Definition [2.1] is unchanged if we replace a <p b with a <p b.
Consequently, Theorem can be applied to questions of F-positivity, as we do
repeatedly in Section [6]

Theorem 4.8. Let (P,w) and (Q, T) be labeled posets. The following are equivalent:
(1) L(P,w') C L(Q,T) for some consistent relabeling w' of (P,w);
(2) S<(P,w') 2 5(Q,7) for some consistent relabeling w' of (P,w);
(3) (Q,7) is obtained from (P,w) by generalized-redundancy-before-deletion.

Proof. We will show that (3) is equivalent to the following statement:

(3") (Q,7) is obtained from (P,w’) by (regular) redundancy-before-deletion for
some consistent relabeling w’ of (P,w).
Then the result will follow by applying Theorem with w’ in place of w.
We need to show that both the process of (3) and that of (3") can arrive at the
same possibilities for (@, 7) when starting at a given (P,w). Temporarily ignoring
labels and weakness/strictness, we note that whether we apply the process of (3)
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or (3'), we begin by adding some set of redundant edges to P. And (3) and (3')
can certainly mimic each other in the edges they add to P. We have two ways
to designate the weakness/strictness of the redundant edges: following (3), we can
designate in any way that does not create a bad cycle, or, following (3'), we can
designate according to a labeling w’.

If we start with (P,w) and follow (3) in adding redundant edges, by Proposi-
tion the same designation of weakness/strictness can be achieved by following
(3") using an appropriate relabeling w’. We know that w’ must be a consistent label-
ing of (P,w) because adding edges as in (3) does not change the weakness/strictness
of the cover relations of (P,w).

If we instead follow (3') in adding edges and designate weakness/strictness ac-
cording to the labeling w’, we will not introduce any bad cycles, again by Propo-
sition Therefore, any designation obtained by following (3’) can be mimicked
by following the generalized redundancy of (3).

In summary, after adding redundant edges, both (3) and (3’) can arrive at the
same collection of weak (resp. strict) redundant edges and cover relations of (P,w).
Since deletion for (3) and (3') are performed in exactly the same way, they can
certainly continue to mimic each other and arrive at the same (Q, 7). (I

5. COMBINING POSETS

In Section 4, we started with a single labeled poset (P,w) and performed oper-
ations to obtain another labeled poset (@, 7). In this section, we want to consider
the situation where we start with a pair (or multiple pairs) of posets (P,w) and
(Q, 1) such that (P,w) <p (Q,7) and ask what operations can we perform on both
posets to preserve the F-positivity.

Operations that combine posets P and @ include the disjoint union P + @, the
ordinal sum P @ @, and the ordinal product P ® @; for definitions, see [Stal2
Sec. 3.2]. We consider an operation that is a common generalization of all three
of these operations, defined in [BHK18al BHKI8D] as the “Ur-operation.” We will
refer to the operation as “poset assembly.”

5.1. Poset assembly. At this point, it will make things clearer if we slightly loosen
our convention of identifying poset elements with their labels; specifically, the letters
p and q used below refer to specific elements of posets rather than positive integers.

Definition 5.1 ([BHKISal [BHK18b]). For a labeled poset (P,w) and a sequence
of posets (Py,..., Pp|) on disjoint sets, we define the assembled poset Pli — P to

be the disjoint union Uzll P; with the following order relation:
j<pk ifj#k

; <
for p € P; andquk,Wehavep_qwhen{ p<pq ifj=k

An example of P[i — P;] is shown in Figure with the labeling explained
next. We refer to P as the framework poset and call the P; the component posets.
Roughly speaking, the assembled poset is obtained by replacing the element of P
labeled ¢ with P; for all i.

Definition 5.2. For a framework labeled poset (P, w) and a sequence of component
labeled posets ((P1,w1), ..., (Pyp|,w|p|)), we define the inherited labeling 2 of Pli —
P;] as follows:

for p € Py, Qp) = (k,wr(p)).
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o

P1,w1 P2,w2) (Ps,ws)

FIGURE 5.1. A framework labeled poset (P,w), three component
labeled posets, and the resulting assembled poset (P[i — P;], )
with the inherited labeling.

See Figure for an example, where we drop the parentheses around the inher-
ited labels to allow for a more compact figure. We totally order the inherited labels
according to lexicographic order, allowing us to refer to weak and strict edges in
the assembled poset (P[i — P;],€2). Note that the inherited labeling is defined so
that it preserves the weak and strict edges within each component poset, and that
the weakness/strictness between the components matches that in (P,w). Since our
assembled posets P[i — P;] will always be labeled by the inherited labeling, we will
abbreviate (P[i — P;],Q) as P[i — P;].

Theorem can be used to compute Kp[;_,p): we can construct the linear
extensions m of P[i — P;] as sequences of pairs of positive integers, and define
the descents of 7 using lexicographic order. For example, one linear extension of
P[i — P;] from Figure is

m=((1,4), (1,1), 3, 1),(173),(3,3)7(1’2),(372),(3,4)7(2,3),(274),(2,1),(2,%)) |
5.1
which has descent composition 122322. As would be expected, we will use L(P[i —
P;]) to denote the set of linear extensions of an assembled poset P[i — F;].

5.2. Poset assembly preserves linear extension containment. Following the
approach of Section |4, Theorem tells us that two assembled posets P[i — P;]
and Qi — Q;] with inherited labelings will satisfy P[i — Pj] <p Qi — @] if
L(P[i — PB;]) C L(Q[i — Q;]). Our first result about poset assembly is that linear
extension containment is preserved in full generality.
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The proof will make use of the less-than set of P[i — P;] which, by Definitions[5.1|
and is given by: ((j1,ki), (J2,k2)) € S<(P[i — B;]) if and only if (j1,72) €
S<(P) or both 71 =J2 and (kl,kg) € S<(Pj1).

Theorem 5.3. Consider labeled posets (P,w) and (Q,T) such that L(P,w) C

L(Q,7). If sequences ((Pr,w1),...,(Ppl,wpl)) and ((Q1,71),....(Qpl,7p])) of
labeled posets satisfy L(Py,w;) C L(Qy, ) for all r, then

L(Pli — B]) € L(Qli — Qi]).

Proof. By Theorem[d.2] we know S<(P,w) 2 S<(Q,7) and S<(Pr,w;) 2 S<(Qy,7r)
for all r, and we wish to show that S<(P[i — B;]) 2 S<(Q[i — Qi]).

Let ((j1,k:), (J2,k2)) € S<(Q[i — @i]). There are two cases to consider.
If j1 # j2, then (j1,72) € S<(Q,7), and hence (j1,72) € S<(P,w), implying
((J1, ki), (J2, k2)) € S<(Pli — Pi]). If j1 = ja, then (k1,k2) € S<(Qj,,7;,), and
hence (kl,kg) S S<(Pj17w]'1), 1mp1y1ng ((jl, ki), (j27]€2)) S S<(P[Z — PLD O

5.3. Poset assembly and F-positivity. Having shown that poset assembly pre-
serves linear extension containment, we next ask whether it preserves F-positivity.
This is not always the case; for example, see Figure We have (P,w) <p (Q,T)
but it is not that case that P[i — P;] <p Q[i — P;]. In this example it is even the

(va) (Q,T) (Pi,wi) fOI‘ all 7

FIGURE 5.2. We have (P,w) <p (Q,7) but P[i — P;] £r Qi — Pj].

case that suppp (P[i — P;]) € suppp (Q[i — P;]): the poset P[i — P;] has a linear
extension

((1,1),(2,1),(2,2),(2,3),(4,1),(4,3), (4,2),(1,3),(1,2),(3,1),(3,2), (3,3)),,

contributing 6114 to the F-support of P[i — P;]. As for Q[i — P;], it is not difficult
to check that a linear extension beginning with five ascents cannot be followed by
three consecutive descents, so 6114 is not in the F-support of Q[i — B;].

We can achieve F-positivity preservation if we strengthen our hypotheses to a
mixture of linear extension containment and F-positivity. This brings us to our
second result on poset assembly, whose proof is considerably more technical than
that of Theorem [(.3l

Theorem 5.4. Consider labeled posets (P,w) and (Q,T) such that L(P,w) C

£(Q77—)' If sequences ((Plvwl)v ceey (P\Pl’w\Pl)) and ((Qla 7_1)’ ceey (Q\P|’7—|P\)) Of
labeled posets satisfy (Pr,wy) <p (Qr,7) for all r, then
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As special cases, we can let P = Q be a 2-element antichain to deduce that
disjoint union preserves F-positivity, or let P = Q be a 2-element chain (with
either a strict or a weak edge) to deduce that ordinal sum does too.

Proof of Theorem[5.]} In view of Theorem we will prove the inequality by
defining an injective map ® : L(P[i — B;]) — L(Q[i — Q;]) that preserves the
descent set (where descents are defined according to lexicographic order). Let

= ((j1,k1), (J2, k2), ..., (Gn, kN))

be a linear extension of P[i — P;]. For r € [|P|], let 7(") denote the subsequence of
7 consisting of those pairs (4, k) such that j = r:

7T(T) = ((T, kh)? (Tv kfz)’ Tt (T’ ké\Prl))'

For example, for 7 from (5.1)), we get 7(3) = ((3,1),(3,3),(3,2),(3,4)). Note that
(Keys Koy - oo ke, ) 18 a linear extension of P.. By our hypothesis, there exists a

descent-preserving injective map (") from L(P,) to £(Q,). Denote the image of
(keys keys - - ke, ) under o) by (K, Kfys- - Ky, ). Then let ") be the map
that sends 7(") to

¢(T) (W(T)) = ((7"7 kél), (T’ kzg)v R (7“, kZ‘PM ))v

see Example below. Finally, since every entry (j, k) of 7 is a member of exactly
one 7", we define ®(7) to be the result of applying every ¢(") to the subsequence
7" within 7. We need to show that ® is well defined, injective and descent-
preserving.

For m € L(P[i — PB;]), we first need to show that ®(7) € L(Q[i — @Q;]). Clearly
the pairs in ®(7) are in bijection with the labels on Qi — Q;], So consider (a1,by)
that comes before (ag,b2) in ®(m). We need to show that ((az,bs),(a1,b1)) &
S-(Qli > Q).

Suppose first that a; # as. Since the a; labels do not change under @, there
must be some (a1, bs) that comes before some (az,bs) in 7. Thus (az,a1) € S<(P)
so, by Theorem [4.2] and since £(P,w) C £(Q,T), we know (az,a;) € S<(Q). Thus
((a2,b2), (a1,b1)) & S<(Qi = Q4]).

Now suppose that a; = as. Since (a1,b;) comes before (as,bs) in ®(7), by
construction of ®(7), we know that b; comes before by in some linear extension of
(QaysWay ). Thus (b, b1) & S<(Qa,;wa, ) and so ((az, b2), (a1,b1)) & S<(Qli = Qi]).

To show injectivity, suppose ®(7) = ®(p) for p € L(P[i — F;]). Since ®(7) does
not change the first entry in each pair of 7, we know the jth pair of 7 matches the
jth pair p in their first entries, for all j. The second entries also match since each
©(™) in injective, and so each ¢(") is too.

To show the descent set is preserved, consider adjacent pairs (jg,k¢) and
(jg+1, k’g+1) inmT= ((jl, k’l), (jg,kg), ey (,jN, k}N)) If jg ;é jg+1, then since ® pre-
serves the first entry of each pair, £ is a descent of 7 if and only if it is a descent of
® (7). The same conclusion applies if j; = jy41 since each ©(™ in descent preserving,
and so each ¢(") is too. (|

Example 5.5. Let P[i — P;] as be as in Figure Let (@, 7) be the result of
deleting the edge 1 < 2 from (P,w). For r = 1,2,3, define (Q,,7) = (Pr,w,)
except delete the edge 1 < 4 from (Q3,73). As in (5.1)), let

™= ((1‘4)’ (1/ 1)7 (3’ 1)’ (]“ 3)3 (373)7 (17 2)’ (37 2)’ (37 4)7 (2’ 3)7 (27 4)7 (27 ]‘)’ (27 2))'
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Then let us choose the descent-preserving ¢(") so that

oM (M) = M (((1,4), (1,1),(1,3),(1,2))) = ((1,4),(1,1),(1,3),(1,2)),
¢ (@) = 6D (((2,3),(2,4),(2,1),(2,2))) = ((2,3), (2,4),(2,1),(2,2)),
o (@) = 6D (((3,1),(3,3),(3,2),(3,4))) = ((3,3), (3,4), (3,1),(3,2))

(in fact, ¢ is the only one in which we had some choice). Then

B(m) = ((1,4), (1,1),(3,3),(1,3),(3,4), (1,2), (3,1),(3,2),(2,3),(2,4),(2,1), (2,2)).
We see that Des(m) = Des(® (7)) and can check that ®(7) € L(Q[i — Q;]).

6. CLASSES WITH CONDITIONS THAT ARE BOTH NECESSARY AND SUFFICIENT

This section is devoted to classes of posets for which we have simple conditions
on (P,w) and (Q, 7) that are both necessary and sufficient for (P,w) < (Q, 7).

6.1. Greene shape (k,1). For this subsection, we will restrict our attention to
naturally labeled posets and so we will denote (P,w) just by P. We will use the
term “Greene shape” hereafter to mean chain Greene shape (from Deﬁnition.
Posets of Greene shape (k,1) are those that consist of a maximal chain with k
elements, which we call the spine, and a single other element e, which we call the
foot. Such posets come in four types, with examples from the four types when k = 5
illustrated in Figure

(D) e is covered by a non-minimal element of the spine (the foot points Down);
(U) e covers a non-maximal element of the spine (the foot points Up);
(B) e both covers and is covered by elements of the spine (Both up and down);
(I) e is its own connected component (Isolated).

S8

Type D Type U Type B Type I

FIGURE 6.1. Examples from the four different types of posets of
Greene shape (5, 1).

Every poset P of Greene shape (k,1) can be encoded as an interval [ap,bp] =
I(P) of integers from from the set {0,1,...,k+1} as follows. Number the elements
of the spine by 1,...,k from bottom to top, and call the foot e as before. Let ap
(resp. bp) be the number of the element of the spine covered by e (resp. which
covers e), or let ap = 0 (resp. bp = k + 1) if no such element exists. For example,
the four posets P in Figure have I(P) equaling [0,4], [2,6], [2,4], and [0, 6],
respectively.

We are now able to state necessary and sufficient conditions for F-positivity,
F-support containment, M-positivity, and M-support containment in terms of a

B [LM22], these four types are labeled I-1V, respectively.
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simple containment condition for I(P). Let P denote P with all strict edges, i.e.,
the result of applying the bar involution to the naturally labeled P.

Theorem 6.1. Let P and Q be naturally labeled posets of Greene shape (k,1). The
following are equivalent:

(1) P<rQ;
(2) suppp(P) C suppp(Q);
(3) P<mQ;

(4) P <y Q;

(5) supp(P) <ar suppy,(Q);
(6) I(P) C I(Q).

The point of this theorem is that (6) gives an immediate way to determine
whether the other five inequalities hold or not. Note that (5) has P and @ in place
of P and (). This is because, for a naturally labeled poset P, the M-support of P
is the full set of compositions of |P|.

We would like to use jump sequences in our proof, but the jump sequence of a
naturally labeled poset P is just (|P|). So instead, we will use the jump sequence
of P, which we call the bar-jump of P. Similarly, the star-bar-jump of P will mean
the jump after applying the star involution to P.

Proof of Theorem[6.1. We know from that (1)=-(2) and (1)=-(3). By Propo-
sition and using again, we also get that (1)=(4)=(5). We will show that
(6)=(1) and that (2), (3) and (5) each implies (6).

(6)=(1). For (6) to hold with P not isomorphic to @, we are limited to the
following cases.

(a) @ is of Type I. Then @ is obtained from P by edge deletion, so (1) holds.

(b) P and @ are both of Type D. Then the foot must be connected to a larger
element of the spine in @ than in P. Thus @ is obtainable from P by
generalized-redundancy-before-deletion and so, by Theorem [£.8] linear ex-
tension containment holds, from which (1) follows.

(¢c) P and @ are both of Type U. This is similar to the previous case.

(d) P is of Type B and @ is of Type D or U. We prove the case when Q is of
Type D, with the other case being similar. Delete the edge in P that goes
up from the spine to the foot to obtain an intermediate poset R such that
P <p R. Since R is of Type D, apply the argument from (b) to get that
R <p @ and hence (1) holds.

(e) Both P and @ are of Type B. Then @ is obtained from P by (at most) two
redundancy-before-deletion operations, one like in Case (b) and one like in
Case (c¢). Again, Theorem [4.8| yields the desired result.

(2)=(6). Next, suppose (2) holds. By Corollary and the statements that
immediately follow it, the bar-jump and star-bar-jump of @ must weakly domi-
nate those of P. Observe that the bar-jump of a poset P with I(P) = [a,b] is
(19,2,1F=1=%) while the star-bar-jump is (1¥T1=% 2 1%=2). Thus if I(Q) = [c, d],
we must have a > ¢ and b < d, so (6) holds.

(3)=(6). If P is a naturally labeled poset with k + 1 elements, then for any
0 < j < k+ 1, Proposition tells us that the coefficient of M(;;41—;) in Kp
is the number of order ideals with j elements. If P has Greene shape (k,1) and
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I(P) = [a,b] with 0 < a < b < k+ 1, we see that the number of such order ideals
is 2if a < j < b and 1 otherwise. Indeed, a < 7 < b corresponds to those cases
when we have the option of including the foot in the order ideal or not. Therefore,
if P <y @, just by considering the coefficients on terms of the form M; ;41— ;), we
obtain I(P) C I(Q).

(5)=(6). Finally, suppose (5) holds. By Corollary[3.5]and the sentence immedi-
ately before Example the jump and star-jump of @ must weakly dominate those
of P. These are the same conditions as when showing (2)=-(6), so (6) holds. [

For fixed k, considering the set of naturally labeled posets of Greene shape (k, 1),
we can order them according to <g to obtain what we might call the F'-positivity
poset for this class. Note that the latter poset is a poset of posets! The equivalence
of (1) and (6) in Theorem shows that the Hasse diagram has a particularly
appealing form; see Figure for the case k = 5, from which the structure for
general k is clear. Of course, we would get the same poset using the orders given
by (2)—(5) of Theorem in place of <p.

FIGURE 6.2. The F-positivity poset for naturally labeled posets
of Greene shape (5,1). We represent the elements P by I(P) with
the square brackets omitted.

6.2. Caterpillar posets. We define a caterpillar poset to be a naturally labeled
poset consisting of a maximal chain of k elements, again called the spine, along with
¢ additional elements that are each connected to the spine by at most one edge; an
example is shown Figure Connected caterpillar posets are a poset analogue of
caterpillar graphs. This analogy suggests that we call the non-spine edges “legs”
and the non-spine elements “feet.”

FIGURE 6.3. An example of a caterpillar poset
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The terms “spine” and “feet” are consistent with the previous subsection, so we
can follow the setup there to encode a caterpillar poset as a list of intervals from
{0,1,...,k+1}, with one interval for each foot. The interval associated with a foot
e will be denoted [a(e), b(e)]. Denote the list of these intervals for the feet by I(P)
and order it lexicographically. Thus the poset in Figure would be encoded as

Z(P) = ([0,3],[0,5], 10,8}, 1,8], [1, 8], [4,8], [5,8], [6, &)

We will denote the ith element of this sequence by Z(P); = [a(p;), b(p;)], hereafter
referring to the foot that contributes Z(P); as p;. Similarly, ¢; will contribute Z(Q);

to Z(Q).

Theorem 6.2. If P and Q are naturally labeled caterpillar posets with k spine
elements and £ feet then the following are equivalent:

(1) P<rQ;
(2) suppp(P) C suppp(Q);

(3) P<m Q:

(4) supp,;(P) C suppy(Q);

(5) Z(P); CZ(Q); for alli=1,...,¢L.

Again, the point of this theorem is that the last condition gives a simple way to
imply the inequalities shown in the other four conditions.

Remark 6.3. Theorem does not hold with a mixture of strict and weak edges.
For a counterexample, we can consider two posets P and () that both have k
elements on their spine connected by all strict edges, with Z(P) = {[1,k + 1]} and
Z(Q) = {[0,k]}. The case k = 3 is shown in Figure One can check that
Kp = Kq and, in fact, they equal the Schur function s, 1x-1y. The equivalence of
and would then imply that Z(P); = Z(Q); which is false for all k£ > 2.

FIGURE 6.4. A counterexample for mixed-edge caterpillar posets.

The feet of a caterpillar poset with k spine elements come in three types, which
we will call D, U, and I to parallel Figure[6.1] In other words, Type D are those feet
whose legs hang down from the spine, i.e., the foot has interval [0,4] for 2 <14 < k.
Note that [0,1] is not a valid interval since the corresponding foot would be an
element of the spine. Similarly, Type U are those feet whose legs point up from
the spine, i.e., the foot has interval [i,k + 1] for 1 < i < k — 1. Type I are
isolated feet, meaning they are their own connected component of P. Notice that
the lexicographical ordering of Z(P) means that Type D elements are listed first,
followed by Type I, and then Type U. We let Pp, Py and P; denote the number
of elements of a caterpillar poset P of the three types.

Our proofs will make heavy use of the jump sequence of a poset as studied in
Subsection .21
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Lemma 6.4. Suppose P and Q) are caterpillar posets with k spine elements and £

feet. If suppp(P) C suppp(Q) or suppy,(P) C suppy,(Q) then
(a) Po+ P <Qp+Qr;
(b) Pu+ P <Qu+ Q1

Proof. We work with P and Q since suppp(P) C suppp(Q) is equivalent to
suppr(P) C suppx(Q) by Proposition The only elements of P of jump 0
will be those feet of Type D or I along with the bottom element of the spine.
Thus the first element of the jump sequences of P is Pp + P; + 1. Similarly, the
first element of the jump sequence of @ will be Qp + Q1 + 1. Using Corollary
and inequality (a) that follows it, we yield Lemma a). By performing the
star involution (taking the dual of P and @) and proceeding similarly, we obtain

(b). O

Proof of Theorem[6.3. We know that é and é. We also know from
Proposition that is equivalent to P <p @ which then implies by the
M-positivity of every F,. We will show that :\ and that and each
imply (B)-

(B)=(1). Assume that Z(P); C Z(Q), for all i = 1,...,£. We wish to transform
P into @ by changing the connection of each p1,...,ps to the spine so that it is the
same as that of ¢1, ..., qs, respectively. Since the feet are not connected directly to
each other, these ¢ changes can be done in any order and are independent of one
another. So fixing i, we wish to show that the result of changing the connection of
p; to the spine to that of ¢; results in a poset P(9) such that P <p P,

Consider the possible cases for the types of p; and ¢;. If Z(P); = Z(Q);, there is
nothing to check. There are just three cases when Z(P); C Z(Q);.

(a) If ¢; is of Type I then P is obtained from P by deletion of an edge, so
P <y PO,

(b) Suppose p; and g; are both of Type D. Hence ¢; is connected to a larger
element of the spine than p;. Thus P() is obtained from P by generalized-
redundancy-before-deletion. By Theorem we get linear extension con-
tainment of P in P® and so P <z P,

(¢) The case when p; and g; are both of Type U is similar to (b).

The above argument still holds even if the change in the connection of p; to the
spine is applied after changes in the connections of other feet to the spine. Therefore
making the changes from I(P), to I(Q); for all i results in an increase in F-positivity
order.

:> and :>; we will prove these concurrently using the contrapositive.
Suppose Z(P); € Z(Q); for some i. There are several cases depending on the type
of p; and ¢;. Notice that ¢; cannot be of Type I since Z(P); C Z(Q); always holds
in that case.

(a) Both p; and g; are of Type U. We have Z(P); = [a(pi), k + 1] and Z(Q); =
[a(g:), k + 1] with a(p;) < a(g;). We will work with P and Q, considering
the elements of jump at most a(p;). The key is that p; has jump a(p;)
whereas ¢; has jump strictly greater than a(p;). In full detail, because of
the lexicographic order on Z(P), all i — 1 feet corresponding to the first
i — 1 intervals in Z(P) have jump at most a(p;) in P. In addition, there

are a(p;) + 1 spine elements with jump at most a(p;) and at least one
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additional foot, including p;, with jump exactly a(p;). Thus P has at least
i+ a(p;) + 1 elements of jump at most a(p;) whereas similar reasoning
shows that the number for Q) is at most i+a(p;). As a result, jump(P) Ldaom
jump(Q). Using Corollary and inequality (a) that follows it, we conclude

respectively that supp,,;(P) € supp,,(Q) and suppp(P) Z suppp(Q), as
required.

(b) Both p; and ¢; are of Type D. We apply the dual operation and follow the
steps of the previous part to P* and Q* in place of P and Q to deduce that
jump(P*) Lgom jump(Q*). By the inequality (c) that follows Corollary
we conclude that suppz(P) € supp(Q). Using the fact that P* is isomor-
phic to (P)* and both have all strict edges, we again refer to the paragraph
following Corollary to conclude that supp,,(P) Z supp,,(Q).

(c) p; is of Type D and ¢; is of Type U. By the lexicographic order on Z(P)
and Z(Q), we get Pp > i but Qp + Q1 < 4, contradicting Lemma a).
Thus suppp(P) € suppp(Q) and supp,, (P) & suppy, (Q)-

(d) p; is of Type U and g; is of Type D. Considering Z(P) and Z(Q) from right-
to-left, this means Py > ¢+ 1 — i but Qu + Q1 < £ + 1 — ¢, contradicting
Lemma [6.4{(b).

(e) p; is of Type I. If ¢; is of Type U, then we get Pp+ P; > i but Qp + Q1 < 4,
contradicting Lemma(a). If ¢; is of Type D, then we get Py+P; > (+1—1
but Qu + Q1 < £+ 1 — 7, contradicting Lemma b).

O

Remark 6.5. Notably absent from Theorem is the condition P <,; Q. It
is absent because it is not equivalent; the smallest example of a pair P and @
such that P <p; @ but P £r @ is shown in Figure [6.5] We can compute that
KQ — Kp = F41 + F32 + F311 + F221 — F122 and is M—pOSlthB. If we would prefer
both P and @ to be connected, there exist such counterexamples using 6-element

caterpillars.
: /& > l/(}

FIGURE 6.5. An example where P <;; @ but P £r @

Recent work, such as [AAM24] [ADM23] [HT17, [LW20al [LW20b, MW14! [Zho20],
has looked for classes of posets where the elements are distinguished by K p, meaning
that if P and @ are not isomorphic, then Kp # Kq.

Corollary 6.6. Kp distinguishes the class of caterpillar posets.
Proof. Suppose Kp = K¢ for caterpillars P and @. Clearly P and @ must have
the same number of elements. By [MW14l Prop. 3.7], we have K3 = Kz . Then

[MWT14, Prop. 4.2] tells us that the jump sequences of P and @ have the same length,
which implies that the lengths of the spines of P and @ are equal. Thus P and Q
also have the same number of feet. Theorem then implies that Z(P) = Z(Q)
and so P and @ are isomorphic. [
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7. OPEN PROBLEMS

We have not attempted to be comprehensive and there are many further avenues
of investigation for comparing K(p) and K(q -y, whether according to positivity
or support containment. In addition to Question let us mention a selection of
other questions that arose during our investigations, divided into 4 types.

(1) A weakness of our necessary conditions in Section |3|is that most of those for
generally labeled posets only require us to assume M-support containment.
Are there stronger necessary conditions that are based on M-positivity,
F-support containment, or especially F-positivity?

(2) A useful source of ideas for us was to construct the entire F-positivity
poset for small values of | P| and see if our results could explain all the cover
relations, and we recommend this approach for others interested in working
in this area.

Let us mention a technique that explains some of the cover relations we
encountered that are not explained by the results so far. If a labeled poset
(P,w) has two incomparable elements = and y, its set of (P,w)-partitions
f can be partitioned into two subsets: those where f(x) > f(y) and those
where f(x) < f(y). We use this idea to explain inequalities such as

@) SF i\i

Indeed, the lesser poset can be decomposed as

Y

(7.1)

x €T

(7.2)

(where each labeled poset (P,w) is represting K(p,, in this algebraic ex-
pression) and the greater poset can be decomposed as

NS

These two decomp081t10ns explain the inequality in 1 1)) since the rlghtmost
labeled poset in can be obtained from the rightmost poset in ([7.2]) by
generalized—redundancy—before—deletion.

However, it is important not to overuse this technique in the following
sense. By repeated applications of such decompositions to labeled posets
(P,w) and (Q,T), one can eventually arrive at two sums of labeled chains
which we can try to compare. But these sums of chains are just the graphical
representations of the F-expansions of K(p,,) and K(q ), so this approach
is doing nothing more than comparing Kp ., and K (g, by explicitly com-
puting their F-expansions.
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(3) There are ways we could attempt to strengthen the results of Section [}

o Perhaps the most obvious and compelling is to find larger classes of
posets for which there are simple conditions that are both necessary
and sufficient for F-positivity. A class that would generalize and unify
the posets of Greene shape (k,1) of Theorem and the caterpillar
posets of Theorem[6.2] would be “caterpillar-like” posets that also allow
feet of Type B (as defined in Figure [6.1]).

o Theorem suggests the question of what happens when we allow
both strict and weak edges in the caterpillar graph. Relations such as

(7.4)

mean that we can still get comparability. Can we properly explain such
inequalities?

(4) We have focused largely on the case when the assignment of strict/weak
edges is arbitrary. But in the equality question for K(p,,), it is possible
to get stronger results by restricting one’s attention to naturally labeled
posets, as is done in [HT17, [LW20al, LW20Dbl [MWT4] and as we did here in
Subsection [3.3] and Section[6} Are there other results in this paper that can
be advanced or new types of results that can be obtained by restricting to
the naturally labeled case? The necessary conditions of [LW20a, Section 3]
might be a good source of ideas.
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