Computer Simulation of Glasses: Jumps and Self-Organized Criticality

> Katharina Vollmayr-Lee Bucknell University

> > November 2, 2007

Thanks: E. A. Baker, A. Zippelius, K. Binder, and J. Horbach

Glass:

→ system falls out of equilibrium

Structure: discordered

Glass:

→ system falls out of equilibrium

Structure: discordered Dynamics: frozen in

Introduction

[C.A. Angell and W. Sichina, Ann. NY Acad.Sci. 279, 53 (1976)

Dynamics:

→ slowing down of many decades

Model

Binary Lennard-Jones System

$$V_{\alpha\beta}(r) = 4 \epsilon_{\alpha\beta} \left(\left(\frac{\sigma_{\alpha\beta}}{r}\right)^{12} - \left(\frac{\sigma_{\alpha\beta}}{r}\right)^{6} \right)$$

$$\begin{aligned} \sigma_{\mathsf{A}\mathsf{A}} &= 1.0 \quad \sigma_{\mathsf{A}\mathsf{B}} = 0.8 \quad \sigma_{\mathsf{B}\mathsf{B}} = 0.88 \\ \epsilon_{\mathsf{A}\mathsf{A}} &= 1.0 \quad \epsilon_{\mathsf{A}\mathsf{B}} = 1.5 \quad \epsilon_{\mathsf{B}\mathsf{B}} = 0.5 \end{aligned}$$

[W. Kob and H.C. Andersen, PRL 73, 1376 (1994)]

 $800\ A$ and $200\ B$

Numerical Solution: Euler Step

Molecular Dynamics Simulation

Simulations

Dynamics

below glass transition:

T = 0.15 - 0.43 $T_{\rm c} = 0.435$

Cage-Picture

Outline

- Jump Statistics
- Correlated Single Particle Jumps
- History Dependence
- Summary

Number of Jumping Particles

Fraction of Irreversibly Jumping Particles

fraction of irrev. jumpers = $\frac{\text{number of irrev. jump. part.}}{\text{number of jump. part.}}$

Fraction of Irreversibly Jumping Particles

fraction of irrev. jumpers = $\frac{\text{number of irrev. jump. part.}}{\text{number of jump. part.}}$

⇒ fraction of irrev. jumpers increases with increasing T

Fraction of Irreversibly Jumping Particles

fraction of irrev. jumpers = $\frac{\text{number of } i}{\text{number}}$

number of irrev. jump. part. number of jump. part.

 $\Rightarrow \text{fraction of} \\ \text{irrev. jumpers} \\ \text{increases with} \\ \text{increasing } T$

interpretation: door closing

Time Scale

Time Scale

Time Scales Extra

Summary: Jump Statistics

At larger temperature relaxation:

- not via $\Delta t_{\rm b}$ (indep. of T)
- via larger jumpsizes
- via more jumping particles

Outline

- Jump Statistics
- Correlated Single Particle Jumps
 - ♦ Simultaneously Jumping Particles
 - ◊ Temporally Extended Cluster
- History Dependence
- Summary

Simultaneously Jumping Particles

Definition: Correlated in Time & Space

Simultaneously Jumping Particles Definition: Correlated in Time & Space

Cluster:

nearest neighbor connections (via g(r))

Simultaneously Jumping Particles

Cluster Size = number of particles in cluster

Critical Behavior (Phase Transition)

Example: Liquid \leftrightarrow Gas

Other Examples:

- Magnet (Ising Model)
- Synchronization
- Percolation

At Critical Point:

powerlaws↔ scale invariance

 $f(x) = x^{\alpha}$ $f(\lambda x) = \lambda^{\alpha} x^{\alpha} = \lambda^{\alpha} f(x)$ $f(x) = \frac{1}{2}$ rescale x-axis rescale y-axis

- \longrightarrow looks same from any distance
- \longrightarrow lack of specific length scale
- \longrightarrow large fluctuations

Cluster Size Distribution of Simultaneously Jumping Particles

 $\implies P(s) \sim s^{-\tau}$
percolation?
NO because

- \implies power law for
 - all temperatures
- ⇒ self-organized criticality

Self–Organized Criticality

powerlaw not only at critical point but independent of details of external paramters

[P. Bak, C. Tang, and K. Wiesenfeld, PRL 59, 381 (1987)]

Examples:

- sandpile avalanches
- forest fire
- solar flares
- financial market
- earth quakes

Outline

- Jump Statistics
- Correlated Single Particle Jumps
 - ♦ Simultaneously Jumping Particles
 - ◊ Temporally Extended Cluster
- History Dependence
- Summary

Temporally Extended Cluster

Definition:

cluster of events (\mathbf{r}_i, t_i) connected if:

 $\Delta r < r_{
m cutoff}$ and $\Delta t < t_{
m cutoff}$

Cluster Size Distribution of Temporally Extended Clusters

$$\implies P(s) \sim s^{-\tau}$$

⇒ for all temperatures (self-organized crit.)

Shape of Clusters

z = number of nearest neighbors within cluster s = number of particles (cluster size) $\langle z \rangle =$ average of z over particles $1, \dots s$

Shape of Clusters

z = number of nearest neighbors within cluster s = number of particles (cluster size) $\langle z \rangle =$ average of z over particles $1, \dots s$

Shape of Clusters

z = number of nearest neighbors within cluster s = number of particles (cluster size) $\langle z \rangle =$ average of z over particles $1, \dots s$

Outline

- Jump Statistics
- Correlated Single Particle Jumps
 - ♦ Simultaneously Jumping Particles
 - ◊ Temporally Extended Cluster
- History Dependence
- Summary

Outline

- Jump Statistics
- Correlated Single Particle Jumps
 - ♦ Simultaneously Jumping Particles
 - ◊ Temporally Extended Cluster
- History Dependence
- Summary

Summary: Jump Statistics

reversible and irreversible jumps:

reversible jump

irreversible jump

At larger temperature relaxation:

- via more jumping particles
- via larger jumpsizes
- not via $\Delta t_{\rm b}$ (indep. of T)

History Production Runs

Summary: Jump Statistics

reversible and irreversible jumps:

reversible jump

irreversible jump

At larger temperature relaxation:

- via more jumping particles history dependent
- via larger jumpsizes
- history independent
- not via $\Delta t_{\rm b}$ (indep. of T) history independent

Summary: Correlated Single Particle Jumps

simultaneously jump. part. & extended clusters

- single particle jumps are correlated spatially and temporally
- Distribution of Cluster Size: $P(s) \sim s^{-\tau}$
 - ◊ indep. of cluster definition and waiting time
 - ◊ for all temp. → self-organized criticality (critical behavior gets frozen in)
- string-like clusters

Future/Present

- SiO_2
 - (R. A. Bjorkquist & J. A. Roman & J. Horbach)
- granular media
 - (T. Aspelmeier & A. Zippelius)

Acknowledgments

A. Zippelius, K. Binder, E. A. Baker, J. Horbach

Support from Institute of Theoretical Physics, University Göttingen,

SFB 262 and DFG Grant No. Zi 209/6-1

Time Scales

- one MD step: 0.02 time units, Ar: $3 \cdot 10^{-13} \text{s} \cdot 0.02 = 6 \text{fs}$
- one oscillation: 100 MD steps, 0.6 ps
- time a jump takes: 200 MD steps, 1.2 ps
- time resolution (time bin): 40000 MD steps, 240 ps
- time betw. successive jumps $\Delta t_{\rm b}$: $1.5\cdot 10^6$ MD steps, 9 ns
- whole simulation run: $5\cdot 10^6$ MD steps, 30 ns

Time Scales

Cooperative Processes: $N_{t.bcl}$

History of Production Runs

Number of Jump. Part.

\implies history dependent

Jump Size

 \Rightarrow history independent

Time Between Jumps

 \implies history independent

Summary: Jump Statistics

Exponent $\tau(T)$

 $P(s)_T$

 $P(s)_{\mathsf{twin}}$

Most Cooperative Processes

 $s_{bcl} = largest cluster size$

⇒ highly correlated
 single particle
 jumps
 many particles

Most Cooperative Processes

 \mathcal{X}

 $N_{\rm t,bcl} =$ no. of time bins of largest cluster

⇒ highly correlated single particle jumps

- many particles
- many time bins

(maximum = 125)

Time Scales Extra

$s_{\rm bcl} =$ largest cluster size

 \implies aging dependent

• 1st t-window:

highly cooperative

• 2nd - 5th t-window:

same, cooperative

 $N_{\rm t,bcl} =$ no. of t-bins of largest cluster

 \implies less aging dependent \implies highly cooperative

 \implies aging dependent

• 1st t-window:

highly cooperative

• 2nd - 5th t-window:

same, cooperative

Normalized Jump Size Distribution

Jump Size Distribution

Jump Size Distribution

Distribution of $\Delta t_{\scriptscriptstyle \rm b}$

Distribution of $\Delta t_{\text{\tiny b}}$

 \implies aging dependent

• 1st t-window:

highly cooperative

• 2nd - 5th t-window:

same, cooperative

Time Scales

- one MD step: 0.02 time units, Ar: $3 \cdot 10^{-13} \text{s} \cdot 0.02 = 6 \text{fs}$
- one oscillation: 100 MD steps, 0.6 ps
- time a jump takes: 200 MD steps, 1.2 ps
- time resolution (time bin): 40000 MD steps, 240 ps
- time betw. successive jumps $\Delta t_{\rm b}$: $1.5\cdot 10^{6}$ MD steps, 9 ns
- whole simulation run: $5\cdot 10^6~{
 m MD}$ steps, $30~{
 m ns}$

Time Scales

Cooperative Processes: N_{t.bcl}