
Computer Simulation of Glasses:

Jumps and Self-Organized Criticality

Computer Simulation of Glasses:

Jumps and Self-Organized Criticality

Katharina Vollmayr-Lee

Bucknell University

November 2, 2007

Thanks: E. A. Baker, A. Zippelius, K. Binder, and J. Horbach



Tm T

V

Liquid

liquid

glass

Glass

system falls

out of equilibriumcrystal

Crystal

Introduction

Glass:

Structure: discordered



Tm T

V

Liquid

liquid

glass

Glass

system falls

out of equilibriumcrystal

Crystal

Introduction

Glass:

Structure: discordered
Dynamics: frozen in



η
lo

g 
   

  [
Po

is
e]

12

−2

[C.A. Angell and W. Sichina, Ann. NY Acad.Sci. 279, 53 (1976)

0.4 1.0

slowing down

of many decades

Introduction

Dynamics:

T /Tg



Model

B
A

Binary Lennard-Jones System

Vαβ(r) = 4 εαβ

(

(σαβ

r

)12 −
(σαβ

r

)6
)

σAA = 1.0 σAB = 0.8 σBB = 0.88

εAA = 1.0 εAB = 1.5 εBB = 0.5

[W. Kob and H.C. Andersen, PRL 73, 1376 (1994)]

800 A and 200 B



x(t  ),  v(t  )0 0 ,   a(t  )0

∆0,   a(t  +    t)∆ ∆0 0x(t  +   t),  v(t  +   t)

0x(t  +2    t),  v(t  +2    t)∆ 0 ∆ ,   a(t  +2    t)0 ∆

Numerical Solution: Euler Step

Initialize:

etc.

= Iteration Step:

∆x(t+   t)=x(t)+v(t)   t∆
v(t+   t)=v(t)+∆ a(t)   t∆
a(t)=F(t)/m=−(dU/dx)(t)



Initialize:

etc.

= Iteration Step:

,   a (t  )0x (t  ),  v (t  )0 0i i i

particles i=1,...,N

,   a (t  +2    t)x (t  +2    t),  v (t  +2    t)i 0 ∆ 0i

x (t  +   t),  v (t  +   t)i 0 ∆ 0 ∆ ,   a (t  +    t)i 0 ∆

∆ i 0 ∆

i

three dimensions

x (t+   t)=x (t)+v (t)   t∆
v (t+   t)=v (t)∆ i

+a (t)(   t)  /22∆
∆ ∆i

i i i i

i i+(a (t)+a (t+   t))    t/2

Molecular Dynamics Simulation

∆

a (t)=F (t)/m  = −   U(t)/mii i

∆

i i
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Dynamics

below glass transition:

T = 0.15 − 0.43 Tc = 0.435



Cage-Picture

Mean-Squared Displacement: 〈r2〉(t) =
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T=0.446

data of  T. Gleim & W. Kob

ballistic motion cage diffusionjump

here〈r2〉 ∼ t2 〈r2〉 ∼ t



Definition: Jump Occurrence
Single Particle Trajectory
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Definition: Jump Occurrence
Single Particle Trajectory
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Definition: Jump Type
Irreversible Jump Reversible Jump
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• Jump Statistics

• Correlated Single Particle Jumps

• History Dependence

• Summary



Number of Jumping Particles
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Fraction of Irreversibly Jumping Particles

fraction of irrev. jumpers =
number of irrev. jump. part.

number of jump. part.
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interpretation:
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Jump Size
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=⇒ irreversible jumps
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Time Scale
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(whole simulation 105)

Time Scales Extra



Summary: Jump Statistics

At larger temperature relaxation:

• not via ∆tb (indep. of T )

• via larger jumpsizes

• via more jumping particles
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Simultaneously Jumping Particles

Definition: Correlated in Time & Space

x

t



Simultaneously Jumping Particles

Definition: Correlated in Time & Space

Cluster:

nearest neighbor
connections
(via g(r))

x

t



Simultaneously Jumping Particles

Cluster Size = number of particles in cluster

Cluster:

nearest neighbor
connections

x

t11 1s= 3
2

2 3
24

2
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Cluster Size Distribution

of Simultaneously Jumping Particles
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=⇒ lnP = a − τ ln s

=⇒ P (s) ∼ s−τ

τ = 1.89 ± 0.03

=⇒ critical behavior



scale invariancepowerlaws

looks same from any distance

lack of specific length scale
large fluctuations

Example: Liquid         Gas

T

ρ

gas

liquid

critical point

At Critical Point:

f(x) = x
f(   x)λ = λ

α
α x α= λα

f(x)

rescale x−axis rescale y−axis

Other Examples:
Magnet (Ising Model)
Synchronization
Percolation

(Phase Transition)Critical Behavior
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Cluster Size Distribution

of Simultaneously Jumping Particles
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Self−Organized Criticality

powerlaw  not only at critical point but
independent of details of external paramters

Examples:
sandpile avalanches
forest fire
solar flares
financial market
earth quakes

[P. Bak, C. Tang, and K. Wiesenfeld, PRL 59, 381 (1987)]
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Temporally Extended Cluster

Definition:

cluster of events (ri, ti)

connected if:

∆r < rcutoff and

∆t < tcutoff

x

t1s= 3
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Cluster Size Distribution

of Temporally Extended Clusters
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Shape of Clusters

z = number of nearest neighbors within cluster

s = number of particles (cluster size)

〈z〉 = average of z over particles 1, . . . s
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z  =3.4 z  =1.7



Shape of Clusters

z = number of nearest neighbors within cluster

s = number of particles (cluster size)

〈z〉 = average of z over particles 1, . . . s
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clusters



Shape of Clusters

z = number of nearest neighbors within cluster

s = number of particles (cluster size)

〈z〉 = average of z over particles 1, . . . s

0 100 200 300
s

0

5

10

〈z
〉

simultaneous
extended cluster
sphere

string

=⇒ string-like

clusters

same color = same time
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History Dependence

wint     =
t

1 2 3 4 5

simulation run



History Dependence

wint     =
t

1 2 3 4 5

simulation run
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Summary: Jump Statistics

reversible and irreversible jumps:
�
�
�
�
�
�
�

�
�
�
�
�
�
�

reversible jump irreversible jump

At larger temperature relaxation:

• via more jumping particles

• via larger jumpsizes

• not via ∆tb (indep. of T )

History Production Runs



Summary: Jump Statistics

reversible and irreversible jumps:

�
�
�
�
�
�
�

�
�
�
�
�
�
�

reversible jump irreversible jump

At larger temperature relaxation:

• via more jumping particles history dependent

• via larger jumpsizes history independent

• not via ∆tb (indep. of T ) history independent



Summary: Correlated Single Particle Jumps

simultaneously jump. part. & extended clusters

• single particle jumps are correlated spatially and

temporally

• Distribution of Cluster Size: P (s) ∼ s−τ

� indep. of cluster definition and waiting time

� for all temp. −→ self-organized criticality

(critical behavior gets frozen in)

• string-like clusters



Future/Present

• SiO2

(R. A. Bjorkquist & J. A. Roman & J. Horbach)

• granular media

(T. Aspelmeier & A. Zippelius )
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Time Scales

• one MD step: 0.02 time units, Ar: 3 · 10−13s·0.02 = 6fs

• one oscillation: 100 MD steps, 0.6 ps

• time a jump takes: 200 MD steps, 1.2 ps

• time resolution (time bin): 40000 MD steps, 240 ps

• time betw. successive jumps ∆tb: 1.5 · 106 MD steps, 9 ns

• whole simulation run: 5 · 106 MD steps, 30 ns

Time Scales

Cooperative Processes: Nt,bcl



History of Production Runs
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History Dependence
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History Dependence
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History Dependence
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Summary: Jump Statistics



Exponent τ(T )
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Most Cooperative Processes

sbcl = largest cluster size
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• many particles



Most Cooperative Processes

Nt,bcl = no. of time bins of largest cluster
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Time Scales Extra



History Dependence
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History Dependence
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History Dependence
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Normalized Jump Size Distribution
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Jump Size Distribution
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Jump Size Distribution
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Distribution of ∆tb
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Distribution of ∆tb
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History Dependence
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Time Scales

• one MD step: 0.02 time units, Ar: 3 · 10−13s·0.02 = 6fs

• one oscillation: 100 MD steps, 0.6 ps

• time a jump takes: 200 MD steps, 1.2 ps

• time resolution (time bin): 40000 MD steps, 240 ps

• time betw. successive jumps ∆tb: 1.5 · 106 MD steps, 9 ns

• whole simulation run: 5 · 106 MD steps, 30 ns

Time Scales

Cooperative Processes: Nt,bcl




