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The Bruhat order gives a poset structure to any Coxeter group. The ideal of

elements in this poset having boolean principal order ideals forms a simplicial poset.

This simplicial poset defines the boolean complex for the group. In a Coxeter

system of rank n, we show that the boolean complex is homotopy equivalent to a

wedge of (n− 1)-dimensional spheres. The number of these spheres is the boolean

number, which can be computed inductively from the unlabeled Coxeter system,

thus defining a graph invariant. For certain families of graphs, the boolean numbers

have intriguing combinatorial properties. This work involves joint efforts with

Claesson, Kitaev, and Ragnarsson.
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(W,S) is a finitely generated Coxeter system with the (strong)
Bruhat ordering.

Elements of W with boolean principal order ideals are boolean.

They form a simplicial subposet B(W,S) called the boolean ideal.

The boolean complex of (W,S) is the regular cell complex ∆(W,S)
whose face poset is the simplicial poset B(W,S).

Lemma. An element of W is boolean if and only if it has no
repeated letters in its reduced words.

=⇒ ∆(W,S) is pure, and each maximal face has dimension |S| − 1.
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We study the homotopy type of the geometric realization |∆(W,S)|.

Since boolean elements have no repeated letters in their reduced
decompositions, the only relation we care about in (W,S) is
whether two letters commute.

Thus we can look at the unlabeled Coxeter graph G = G(W,S).

Or rather . . . any finite simple graph G.

B(G) and ∆(G) are analogous: isomorphic to B(W,S) and ∆(W,S).
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Example.

(a) a b (b)

∅

a b

ab ba

(c)

ba

ab

a b

(a) The graph K2. (b) The poset B(K2). (c) The boolean complex
∆(K2), where |∆(K2)| is homotopy equivalent to S1.

The unlabeled Coxeter graphs of the Coxeter groups A2, B2/C2, G2

and I2(m) are all the same as K2.
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For a finite graph G, |G| is the number of vertices in G.

Let G be a finite simple graph and e an edge in G.

• Deletion: G− e is the graph obtained by deleting the edge e.

• Simple contraction: G/e is the graph obtained by contracting
the edge e and then removing all loops and redundant edges.

• Extraction: G− [e] is the graph obtained by removing the edge
e and its incident vertices.

For n ≥ 1, δn is the graph consisting of n disconnected vertices.

' denotes homotopy equivalence.
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Theorem ([RT]). For every nonempty, finite simple graph G,
there is an integer β(G) so that

|∆(G)| ' β(G) · S|G|−1.

Moreover, β(G) can be computed using the recursive formula

β(G) = β(G− e) + β(G/e) + β(G− [e]),

if e is an edge in G with G− [e] 6= ∅, with initial conditions

β(K2) = 1 and β(δn) = 0.

Proposition ([RT]). ∆(H1 tH2) = ∆(H1) ∗∆(H2) where ∗
denotes simplicial join, and β(H1 tH2) = β(H1)β(H2).
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Corollary. For a vertex of degree one, computing β(G) is easy:

β

( )
= β

( )
+ β

( )

β

( )
= β

( )

Corollary. G has an isolated vertex if and only if β(G) = 0.

Corollary. For n ≥ 1, β(Kn) is the number of derangements of [n].

Corollary. β(G− e) = β(G) if and only if G has an isolated vertex
(so β(G) = β(G− e) = 0). Otherwise β(G− e) < β(G).
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The function β, from graphs to N, is a graph invariant.

We can look at its enumerative properties . . .

Example. β is not injective: the two graphs below each have
boolean number 3, and thus are each ' S4 ∨ S4 ∨ S4.

Example. β is not surjective onto an interval: no graph on 4
vertices has boolean number 4, although β(4-cycle) = 5.
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In other enumerative directions, there are families of graphs whose
boolean numbers give well-known sequences.

• graphs with disjoint vertices: always 0

• paths: Fibonacci numbers

• complete graphs: derangement numbers

Other such families involve Ferrers graphs . . .
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To any Ferrers shape, or Young shape or partition, is a
corresponding Ferrers graph:

Let λ = (λ1, . . . , λr) be a partition, where λ1 ≥ · · · ≥ λr ≥ 0.

The associated bipartite Ferrers graph has vertices
{x1, . . . , xr} t {y1, . . . , yλ1}, and edges

{
{xi, yj} : λi ≥ j

}
.

Example. The Ferrers graph and shape for λ = (4, 4, 2):

y1 y2 y3 y4

x1 x2 x3
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The Ferrers graph of an m-by-n rectangular shape is the complete
bipartite graph Km,n.

Computation of the boolean number of such a graph invokes the
Stirling numbers of the second kind . . .

Corollary ([CKRT]). For m,n ≥ 1,

β(Km,n) =
m∑
k=1

(−1)m−kk!

m+ 1

k + 1

 kn.
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The median Genocchi number gn is equal to the number of
permutations of 2n letters having alternating excedances.

For n ≥ 1, the staircase shape of height n is the Ferrers shape

Σn = (n, n− 1, . . . , 2, 1).

Let Fn denote the Ferrers graph for the Ferrers shape Σn.

Corollary ([CKRT]). For n ≥ 1, β(Fn) = gn.
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