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Abstract

We study bijections

{ Set partitions of type X } −̃→ { Set partitions of type X }

for X ∈ {A,B,C,D}, which preserve openers and closers.

In types A, B, and C, they interchange

• either the number of crossings and of nestings,

• or the cardinalities of a maximal crossing and of a maximal nesting.

In type D, the results are obtained only in the case of non-crossing and non-
nesting set partitions.

In all types, we show in particular that non-crossing and a non-nesting set
partition are essentially uniquely determined by its openers and closers.

Set partitions for classical types (via intersection lattices)

•A set partition of type An−1 is a usual set partition of [n]:

{

{1, 4}, {2, 5, 7, 9}, {3, 6}, {8}
}

.

•A set partition of type Bn or Cn is a set partition B of [±n] such
that

B ∈ B ⇔ −B ∈ B,

having at most one block B = −B:

{

{1, 2, 4,−1,−2,−4}, {3,−5}, {5,−3}
}

.

•A set partition of type Dn is a set partition B of type Bn for
which the zero block (if present) is a single pair {i,−i}:

{

{1,−2}, {2,−1}, {4,−4}, {3,−5}, {5,−3}
}

.

•A nesting in a set partition is a quadruple (i < k < l < j)
such that i, j are contained in one block and j, k in another (plus
additional properties in types B and D), where the nesting
order is given by 1 < . . . < n < −n . . . < −1.

•A crossing in a set partition is a quadruple (i < k < j < l)
such that i, j are contained in one block and j, k in another (plus
additional properties in types B and D), where the crossing
order is given by 1 < . . . < n < −1 . . . < −n.

•Non-maximal elements (in the nesting order) in blocks of a
set partition are called openers and non-minimal elements are
called closers.

Visualizations of set partitions
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Non-nesting set partition

{

{1, 4}, {2, 5, 7, 9}, {3, 6}, {8}
}
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Non-crossing set partition

{

{1, 7, 9}, {2, 5, 6}, {3, 4}, {8}
}

1 2 3 4 5 −5 −4 −3 −2 −1~ ~ ~ ~ ~ ~ ~~ ~ ~ ~ ~ ~ ~

Nesting diagram of the type C5 set partition
{

{1,−5,−4,−2}, {2, 4, 5,−1}, {3,−3}
}

1 2 3 4 5 −1 −2 −3 −4 −5~ ~ ~ ~ ~ ~ ~~ ~ ~ ~ ~ ~ ~

Crossing diagram of the type C5 set partition
{

{1, 4,−4,−1}, {2,−5,−3}, {3, 5,−2}
}

Results in different types

Theorem (Kasraoui, Zeng / Chen, Deng, Du, Stanley):
In type A, there exist explicit bijections preserving openers and closers
such that

• the number of crossings and nestings are interchanged, or

• the cardinality of a maximal crossing and of a maximal nesting are
interchanged.

Theorem:
For non-crossing and non-nesting partitions, there exists a unique bijec-
tion preserving openers and closers.

Theorem:
In types B and C, there exist explicit bijections preserving openers and
closers such that

• the number of crossings and nestings are interchanged, or

• the cardinality of a maximal crossing and of a maximal nesting are
interchanged.

Theorem:
For non-crossing and non-nesting partitions, there exists a unique bijec-
tion preserving openers and closers.

Theorem:
In type D, there exist an explicit and essentially unique bijection between
non-crossing and non-nesting partitions preserving openers and closers.

Remark:
In type D, there is a notion of non-crossing and non-nesting set partitions
but we do not have a notion of crossings and nestings.

Maximal crossings ↔ maximal nestings in type C

• encode a type C set partition as a 0−1-filling of a nesting
polyomino:

{

{1,−5,−4,−2}, {2, 4, 5,−1}, {3,−3}
}
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• nestings are then encoded as strict north-east chains

• note how the symmetry is reflected in the diagram

• label the boundary with partitions for growth diagrams,

• transpose all partitions,

• fill the crossing polyomino using those partitions:
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• read off the resulting set partition using again the type C
symmetry:

{

{1, 4,−4,−1}, {2,−5,−3}, {3, 5,−2}
}

Number of crossings ↔ number of nestings

The bijection in type C can be described as follows:

• go through all positive closers c starting with 1,

– denote by ℓ the number of active openers (openers which are not connected to
closers left of c).

• if c is connected to the k-th active opener, change this connection to the (ℓ − k)-th
active opener (this construction was explained by Kasraoui, Zeng);

• do the analogous construction on the negative openers and active closers;

• observe that two arcs connecting a positive opener with a negative closer cross if and
only if they nest; thus all connections between positive openers and negative closers
remain the same.

Remark:

• in type B, one can use a slight variation of both bijections;

• in type D, we obtaine the bijections only between non-nesting and non-crossing parti-
tions.
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