Random walks in the plane

Armin Straub

Tulane University, New Orleans

August 2, 2010

Joint work with: Jon Borwein Dirk Nuyens James Wan

Jon Borwein
U. of Newcastle, AU

Dirk Nuyens
K.U. Leuven, BE

James Wan
U. of Newcastle, AU
We study random walks in the plane consisting of n steps. Each step is of length 1 and is taken in a randomly chosen direction.
We study random walks in the plane consisting of n steps. Each step is of length 1 and is taken in a randomly chosen direction.
We study random walks in the plane consisting of \(n \) steps. Each step is of length 1 and is taken in a randomly chosen direction.
We study random walks in the plane consisting of \(n \) steps. Each step is of length 1 and is taken in a randomly chosen direction.
We study random walks in the plane consisting of n steps. Each step is of length 1 and is taken in a randomly chosen direction.
We study random walks in the plane consisting of \(n \) steps. Each step is of length 1 and is taken in a randomly chosen direction.
We study random walks in the plane consisting of n steps. Each step is of length 1 and is taken in a randomly chosen direction.

We are interested in the distance traveled in n steps. For instance, how large is this distance on average?
Long walks

- Asked by Karl Pearson in Nature in 1905

Long walks

- Asked by Karl Pearson in Nature in 1905
- For long walks, the probability density is approximately \(\frac{2x}{n} e^{-x^2/n} \)
- For instance, for \(n = 200 \):

Densities

\(n = 2 \)

\(n = 3 \)

\(n = 4 \)

\(n = 5 \)

\(n = 6 \)

\(n = 7 \)

Armin Straub Random walks in the plane
Fact from probability theory: the distribution of the distance is determined by its moments.
Moments

- Fact from probability theory: the distribution of the distance is determined by its moments.
- Represent the kth step by the complex number $e^{2\pi ix_k}$.

 The sth moment of the distance after n steps is:

 $$W_n(s) := \int_{[0,1]^n} \left| \sum_{k=1}^{n} e^{2\pi x_k i} \right|^s \, dx$$

 In particular, $W_n(1)$ is the average distance after n steps.
Moments

- Fact from probability theory: the distribution of the distance is determined by its moments.
- Represent the kth step by the complex number $e^{2\pi i x_k}$.

 The sth moment of the distance after n steps is:

 $$W_n(s) := \int_{[0,1]^n} \left| \sum_{k=1}^{n} e^{2\pi x_k i} \right|^s \, dx$$

 In particular, $W_n(1)$ is the average distance after n steps.
- This is hard to evaluate numerically to high precision. For instance, Monte-Carlo integration gives approximations with an asymptotic error of $O(1/\sqrt{N})$ where N is the number of sample points.
The sth moment of the distance after n steps:

$$W_n(s) := \int_{[0,1]^n} \left| \sum_{k=1}^{n} e^{2\pi x_k i} \right|^s \, \text{d}x$$

<table>
<thead>
<tr>
<th>n</th>
<th>$s = 1$</th>
<th>$s = 2$</th>
<th>$s = 3$</th>
<th>$s = 4$</th>
<th>$s = 5$</th>
<th>$s = 6$</th>
<th>$s = 7$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.273</td>
<td>2.000</td>
<td>3.395</td>
<td>6.000</td>
<td>10.87</td>
<td>20.00</td>
<td>37.25</td>
</tr>
<tr>
<td>3</td>
<td>1.575</td>
<td>3.000</td>
<td>6.452</td>
<td>15.00</td>
<td>36.71</td>
<td>93.00</td>
<td>241.5</td>
</tr>
<tr>
<td>4</td>
<td>1.799</td>
<td>4.000</td>
<td>10.12</td>
<td>28.00</td>
<td>82.65</td>
<td>256.0</td>
<td>822.3</td>
</tr>
<tr>
<td>5</td>
<td>2.008</td>
<td>5.000</td>
<td>14.29</td>
<td>45.00</td>
<td>152.3</td>
<td>545.0</td>
<td>2037.</td>
</tr>
<tr>
<td>6</td>
<td>2.194</td>
<td>6.000</td>
<td>18.91</td>
<td>66.00</td>
<td>248.8</td>
<td>996.0</td>
<td>4186.</td>
</tr>
</tbody>
</table>
Moments

The sth moment of the distance after n steps:

\[W_n(s) := \int_{[0,1]^n} \left| \sum_{k=1}^n e^{2\pi x_k i} \right|^s \, dx \]

<table>
<thead>
<tr>
<th>n</th>
<th>$s = 1$</th>
<th>$s = 2$</th>
<th>$s = 3$</th>
<th>$s = 4$</th>
<th>$s = 5$</th>
<th>$s = 6$</th>
<th>$s = 7$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.273</td>
<td>2.000</td>
<td>3.395</td>
<td>6.000</td>
<td>10.87</td>
<td>20.00</td>
<td>37.25</td>
</tr>
<tr>
<td>3</td>
<td>1.575</td>
<td>3.000</td>
<td>6.452</td>
<td>15.00</td>
<td>36.71</td>
<td>93.00</td>
<td>241.5</td>
</tr>
<tr>
<td>4</td>
<td>1.799</td>
<td>4.000</td>
<td>10.12</td>
<td>28.00</td>
<td>82.65</td>
<td>256.0</td>
<td>822.3</td>
</tr>
<tr>
<td>5</td>
<td>2.008</td>
<td>5.000</td>
<td>14.29</td>
<td>45.00</td>
<td>152.3</td>
<td>545.0</td>
<td>2037.</td>
</tr>
<tr>
<td>6</td>
<td>2.194</td>
<td>6.000</td>
<td>18.91</td>
<td>66.00</td>
<td>248.8</td>
<td>996.0</td>
<td>4186.</td>
</tr>
</tbody>
</table>

\[W_2(1) = \frac{4}{\pi} \]
The sth moment of the distance after n steps:

$$W_n(s) := \int_{[0,1]^n} \left| \sum_{k=1}^{n} e^{2\pi x_k i} \right|^s \, dx$$

<table>
<thead>
<tr>
<th>n</th>
<th>$s = 1$</th>
<th>$s = 2$</th>
<th>$s = 3$</th>
<th>$s = 4$</th>
<th>$s = 5$</th>
<th>$s = 6$</th>
<th>$s = 7$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.273</td>
<td>2.000</td>
<td>3.395</td>
<td>6.000</td>
<td>10.87</td>
<td>20.00</td>
<td>37.25</td>
</tr>
<tr>
<td>3</td>
<td>1.575</td>
<td>3.000</td>
<td>6.452</td>
<td>15.00</td>
<td>36.71</td>
<td>93.00</td>
<td>241.5</td>
</tr>
<tr>
<td>4</td>
<td>1.799</td>
<td>4.000</td>
<td>10.12</td>
<td>28.00</td>
<td>82.65</td>
<td>256.0</td>
<td>822.3</td>
</tr>
<tr>
<td>5</td>
<td>2.008</td>
<td>5.000</td>
<td>14.29</td>
<td>45.00</td>
<td>152.3</td>
<td>545.0</td>
<td>2037.</td>
</tr>
<tr>
<td>6</td>
<td>2.194</td>
<td>6.000</td>
<td>18.91</td>
<td>66.00</td>
<td>248.8</td>
<td>996.0</td>
<td>4186.</td>
</tr>
</tbody>
</table>

$W_2(1) = \frac{4}{\pi}$

$W_3(1) = 1.57459723755189\ldots = ?$
The sth moment of the distance after n steps:

$$W_n(s) := \int_{[0,1]^n} \left| \sum_{k=1}^n e^{2\pi x_k i} \right|^s \, dx$$

<table>
<thead>
<tr>
<th>n</th>
<th>$s = 1$</th>
<th>$s = 2$</th>
<th>$s = 3$</th>
<th>$s = 4$</th>
<th>$s = 5$</th>
<th>$s = 6$</th>
<th>$s = 7$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.273</td>
<td>2.000</td>
<td>3.395</td>
<td>6.000</td>
<td>10.87</td>
<td>20.00</td>
<td>37.25</td>
</tr>
<tr>
<td>3</td>
<td>1.575</td>
<td>3.000</td>
<td>6.452</td>
<td>15.00</td>
<td>36.71</td>
<td>93.00</td>
<td>241.5</td>
</tr>
<tr>
<td>4</td>
<td>1.799</td>
<td>4.000</td>
<td>10.12</td>
<td>28.00</td>
<td>82.65</td>
<td>256.0</td>
<td>822.3</td>
</tr>
<tr>
<td>5</td>
<td>2.008</td>
<td>5.000</td>
<td>14.29</td>
<td>45.00</td>
<td>152.3</td>
<td>545.0</td>
<td>2037.</td>
</tr>
<tr>
<td>6</td>
<td>2.194</td>
<td>6.000</td>
<td>18.91</td>
<td>66.00</td>
<td>248.8</td>
<td>996.0</td>
<td>4186.</td>
</tr>
</tbody>
</table>

$W_2(1) = \frac{4}{\pi}$

$W_3(1) = 1.57459723755189 \ldots = ?$
Even moments

<table>
<thead>
<tr>
<th>n</th>
<th>s = 2</th>
<th>s = 4</th>
<th>s = 6</th>
<th>s = 8</th>
<th>s = 10</th>
<th>Sloane’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>6</td>
<td>20</td>
<td>70</td>
<td>252</td>
<td>A000984</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>15</td>
<td>93</td>
<td>639</td>
<td>4653</td>
<td>A002893</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>28</td>
<td>256</td>
<td>2716</td>
<td>31504</td>
<td>A002895</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>45</td>
<td>545</td>
<td>7885</td>
<td>127905</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>66</td>
<td>996</td>
<td>18306</td>
<td>384156</td>
<td></td>
</tr>
</tbody>
</table>
Even moments

<table>
<thead>
<tr>
<th>n</th>
<th>$s = 2$</th>
<th>$s = 4$</th>
<th>$s = 6$</th>
<th>$s = 8$</th>
<th>$s = 10$</th>
<th>Sloane’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>6</td>
<td>20</td>
<td>70</td>
<td>252</td>
<td>A000984</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>15</td>
<td>93</td>
<td>639</td>
<td>4653</td>
<td>A002893</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>28</td>
<td>256</td>
<td>2716</td>
<td>31504</td>
<td>A002895</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>45</td>
<td>545</td>
<td>7885</td>
<td>127905</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>66</td>
<td>996</td>
<td>18306</td>
<td>384156</td>
<td></td>
</tr>
</tbody>
</table>

- Sloane’s, etc.:

\[
W_2(2k) = \binom{2k}{k}
\]
\[
W_3(2k) = \sum_{j=0}^{k} \binom{k}{j}^2 \binom{2j}{j}
\]
\[
W_4(2k) = \sum_{j=0}^{k} \binom{k}{j}^2 \binom{2j}{j} \binom{2(k-j)}{k-j}
\]
Even moments

<table>
<thead>
<tr>
<th>n</th>
<th>$s = 2$</th>
<th>$s = 4$</th>
<th>$s = 6$</th>
<th>$s = 8$</th>
<th>$s = 10$</th>
<th>Sloane’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>6</td>
<td>20</td>
<td>70</td>
<td>252</td>
<td>A000984</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>15</td>
<td>93</td>
<td>639</td>
<td>4653</td>
<td>A002893</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>28</td>
<td>256</td>
<td>2716</td>
<td>31504</td>
<td>A002895</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>45</td>
<td>545</td>
<td>7885</td>
<td>127905</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>66</td>
<td>996</td>
<td>18306</td>
<td>384156</td>
<td></td>
</tr>
</tbody>
</table>

- Sloane’s, etc.:

\[
W_2(2k) = \binom{2k}{k}
\]
\[
W_3(2k) = \sum_{j=0}^{k} \binom{k}{j}^2 \binom{2j}{j}
\]
\[
W_4(2k) = \sum_{j=0}^{k} \binom{k}{j}^2 \binom{2j}{j} \binom{2(k-j)}{k-j}
\]
\[
W_5(2k) = \sum_{j=0}^{k} \binom{k}{j}^2 \binom{2(k-j)}{k-j} \sum_{\ell=0}^{j} \binom{j}{\ell}^2 \binom{2\ell}{\ell}
\]
Theorem (Borwein-Nuyens-S-Wan)

\[W_n(2k) = \sum_{a_1 + \cdots + a_n = k} \binom{k}{a_1, \ldots, a_n}^2. \]
Theorem (Borwein-Nuyens-S-Wan)

\[W_n(2k) = \sum_{a_1 + \cdots + a_n = k} \binom{k}{a_1, \ldots, a_n}^2. \]

- \(f_n(k) := W_n(2k) \) counts the number of abelian squares: strings \(xy \) of length \(2k \) from an alphabet with \(n \) letters such that \(y \) is a permutation of \(x \).
Combinatorics

Theorem (Borwein-Nuyens-S-Wan)

\[W_n(2k) = \sum_{a_1 + \cdots + a_n = k} \binom{k}{a_1, \ldots, a_n}^2. \]

- \(f_n(k) := W_n(2k) \) counts the number of abelian squares: strings \(xy \) of length \(2k \) from an alphabet with \(n \) letters such that \(y \) is a permutation of \(x \).
- Introduced by Erdős and studied by others.

Combinatorics

Theorem (Borwein-Nuyens-S-Wan)

\[W_n(2k) = \sum_{a_1 + \cdots + a_n = k} \binom{k}{a_1, \ldots, a_n}^2. \]

- \(f_n(k) := W_n(2k) \) counts the number of abelian squares: strings \(xy \) of length \(2k \) from an alphabet with \(n \) letters such that \(y \) is a permutation of \(x \).
- Introduced by Erdős and studied by others.
- \(f_n(k) \) satisfies recurrences and convolutions.

For integers $k \geq 0$,

$$(k + 2)^2 W_3(2k + 4) - (10k^2 + 30k + 23)W_3(2k + 2) + 9(k + 1)^2 W_3(2k) = 0.$$
For integers $k \geq 0$,

$$(k + 2)^2 W_3(2k + 4) - (10k^2 + 30k + 23)W_3(2k + 2) + 9(k + 1)^2W_3(2k) = 0.$$

Theorem (Carlson)

If $f(z)$ is analytic for $\Re(z) \geq 0$, “nice”, and

$$f(0) = 0, \quad f(1) = 0, \quad f(2) = 0, \quad \ldots,$$

then $f(z) = 0$ identically.
For integers $k \geq 0$,

$$(k + 2)^2 W_3(2k + 4) - (10k^2 + 30k + 23)W_3(2k + 2) + 9(k + 1)^2W_3(2k) = 0.$$

Theorem (Carlson)

If $f(z)$ is analytic for $\Re(z) \geq 0$, “nice”, and

$$f(0) = 0, \quad f(1) = 0, \quad f(2) = 0, \quad \ldots,$$

then $f(z) = 0$ identically.

$$|f(z)| \leq Ae^{\alpha|z|}, \text{ and } |f(iy)| \leq Be^{\beta|y|} \text{ for } \beta < \pi$$
For integers $k \geq 0$,

$$(k + 2)^2 W_3(2k + 4) - (10k^2 + 30k + 23)W_3(2k + 2) + 9(k + 1)^2 W_3(2k) = 0.$$

Theorem (Carlson)

If $f(z)$ is analytic for $\text{Re}(z) \geq 0$, “nice”, and

$$f(0) = 0, \quad f(1) = 0, \quad f(2) = 0, \quad \ldots,$$

then $f(z) = 0$ identically.

$W_n(s)$ is nice!

$|f(z)| \leq Ae^{\alpha |z|}$, and

$|f(iy)| \leq Be^{\beta |y|}$ for $\beta < \pi$
Functional Equations for $W_n(s)$

So we get complex functional equations like

$$(s+4)^2W_3(s+4) - 2(5s^2 + 30s + 46)W_3(s+2) + 9(s+2)^2W_3(s) = 0.$$
So we get complex functional equations like

\[(s+4)^2W_3(s+4) - 2(5s^2 + 30s + 46)W_3(s+2) + 9(s+2)^2W_3(s) = 0.\]

This gives analytic continuations of $W_n(s)$ to the complex plane, with poles at certain negative integers.
Easy: $W_2(2k) = \binom{2k}{k}$. In fact, $W_2(s) = \binom{s}{s/2}$.

\[W_3(1) = 1.57459723755189 \ldots = ? \]
$W_3(1) = 1.57459723755189 \ldots = ?$

- Easy: $W_2(2k) = \binom{2k}{k}$. In fact, $W_2(s) = \binom{s}{s/2}$.

- Again, from combinatorics:

 $W_3(2k) = \sum_{j=0}^{k} \left(\binom{k}{j} \right)^2 \binom{2j}{j} = \, _3F_2 \left(\begin{array}{c} \frac{1}{2}, -k, -k \\ 1, 1 \end{array} \left| 4 \right. \right) =: V_3(2k)$
\(W_3(1) = 1.57459723755189 \ldots = ? \)

- Easy: \(W_2(2k) = \binom{2k}{k} \). In fact, \(W_2(s) = \binom{s}{s/2} \).
- Again, from combinatorics:

\[
W_3(2k) = \sum_{j=0}^{k} \binom{k}{j}^2 \binom{2j}{j} = 3F_2 \left(\begin{array}{c} \frac{1}{2}, -k, -k \\ 1, 1 \end{array} \middle| 4 \right) =: V_3(2k)
\]

- We discovered numerically that \(V_3(1) \approx 1.574597 - .126027i \).
\(W_3(1) = 1.57459723755189 \ldots = ? \)

- Easy: \(W_2(2k) = \binom{2k}{k} \). In fact, \(W_2(s) = \binom{s}{s/2} \).
- Again, from combinatorics:

\[
W_3(2k) = \sum_{j=0}^{k} \binom{k}{j}^2 \binom{2j}{j} = 3F_2 \left(\begin{array}{c} \frac{1}{2}, -k, -k \\ 1, 1 \end{array} \bigg| 4 \right) =: V_3(2k)
\]

- We discovered numerically that \(V_3(1) \approx 1.574597 - .126027i \).

Theorem (Borwein-Nuyens-S-Wan)

For integers \(k \) we have \(W_3(k) = \text{Re } 3F_2 \left(\begin{array}{c} \frac{1}{2}, -\frac{k}{2}, -\frac{k}{2} \\ 1, 1 \end{array} \bigg| 4 \right) \).
\[W_3(1) = 1.57459723755189 \ldots = ? \]

Corollary (Borwein-Nuyens-S-Wan)

\[
W_3(1) = \frac{3}{16} \frac{2^{1/3}}{\pi^4} \Gamma^6 \left(\frac{1}{3} \right) + \frac{27}{4} \frac{2^{2/3}}{\pi^4} \Gamma^6 \left(\frac{2}{3} \right)
\]

- Similar formulas for \(W_3(3), W_3(5), \ldots \)
A generating function

Recall:

\[W_n(2k) = \sum_{a_1 + \cdots + a_n = k} \binom{k}{a_1, \ldots, a_n}^2 \]
A generating function

Recall:

\[W_n(2k) = \sum_{a_1+\ldots+a_n=k} \left(\begin{array}{c} k \\ a_1, \ldots, a_n \end{array} \right)^2 \]

Therefore:

\[
\sum_{k=0}^{\infty} W_n(2k) \frac{(-x)^k}{(k!)^2} = \sum_{k=0}^{\infty} \sum_{a_1+\ldots+a_n=k} \frac{(-x)^k}{(a_1!)^2 \cdots (a_n!)^2} \\
= \left(\sum_{a=0}^{\infty} \frac{(-x)^a}{(a!)^2} \right)^n = J_0(2\sqrt{x})^n
\]
Theorem (Ramanujan’s Master Theorem)

For “nice” analytic functions φ,

$$\int_0^{\infty} x^{\nu-1} \left(\sum_{k=0}^{\infty} \frac{(-1)^k}{k!} \varphi(k) x^k \right) \, dx = \Gamma(\nu) \varphi(-\nu).$$
Ramanujan’s Master Theorem

Theorem (Ramanujan’s Master Theorem)

For “nice” analytic functions φ,

$$
\int_0^\infty x^{\nu - 1} \left(\sum_{k=0}^{\infty} \frac{(-1)^k \varphi(k)x^k}{k!} \right) \, dx = \Gamma(\nu)\varphi(-\nu).
$$

- Begs to be applied to

$$
\sum_{k=0}^{\infty} W_n(2k) \frac{(-x)^k}{(k!)^2} = J_0(2\sqrt{x})^n
$$

by setting $\varphi(k) = \frac{W_n(2k)}{k!}$.
Ramanujan’s Master Theorem

We find:

\[W_n(-s) = 2^{1-s} \frac{\Gamma(1 - s/2)}{\Gamma(s/2)} \int_0^\infty x^{s-1} J_0^n(x) \, dx \]
Ramanujan’s Master Theorem

- We find:

\[W_n(-s) = 2^{1-s} \frac{\Gamma(1 - s/2)}{\Gamma(s/2)} \int_0^\infty x^{s-1} J_0^n(x) \, dx \]

- A 1-dimensional representation!
 Useful for symbolical computations
 as well as for high-precision integration
Ramanujan’s Master Theorem

- We find:

\[W_n(-s) = 2^{1-s} \frac{\Gamma(1 - s/2)}{\Gamma(s/2)} \int_0^\infty x^{s-1} J_0^n(x) \, dx \]

- A 1-dimensional representation!
 Useful for symbolical computations as well as for high-precision integration

- First and more inspiredly found by David Broadhurst building on work of J.C. Kluyver

A convolution formula

Conjecture

For even n,

$$W_n(s) = \sum_{j=0}^{\infty} \binom{s/2}{j}^2 W_{n-1}(s - 2j).$$
A convolution formula

Conjecture

For even n,

\[W_n(s) = \sum_{j=0}^{\infty} \binom{s/2}{j}^2 W_{n-1}(s - 2j). \]

Inspired by the combinatorial convolution for $f_n(k) = W_n(2k)$:

\[f_{n+m}(k) = \sum_{j=0}^{k} \binom{k}{j}^2 f_n(j) f_m(k - j) \]
A convolution formula

Conjecture

For even n,

$$W_n(s) = \sum_{j=0}^{\infty} \left(\frac{s}{2j} \right)^2 W_{n-1}(s - 2j).$$

Inspired by the combinatorial convolution for $f_n(k) = W_n(2k)$:

$$f_{n+m}(k) = \sum_{j=0}^{k} \binom{k}{j}^2 f_n(j) f_m(k-j).$$

- True for even s
- True for $n = 2$
- Now proven up to some technical growth conditions
You will have to look at the papers to find...

- a hyper-closed form for $W_4(1)$,
- Meijer-G and hypergeometric expressions for $W_3(s)$ and $W_4(s)$,
- evaluations of derivatives including

\[
W_3'(0) = \frac{1}{\pi} \text{Cl} \left(\frac{\pi}{3} \right), \quad W_4'(0) = \frac{7\zeta(3)}{2\pi^2},
\]

- expressions for residues at the poles of $W_n(s)$,
- ...
References

Both preprints as well as this talk are/will be available from:
http://arminstraub.com

THANK YOU!

Special thanks to:
Tewodros Amdeberhan, David Bailey, David Broadhurst, Richard Crandall, Peter Donovan, Victor Moll, Michael Mossinghoff, Sinai Robins, Bruno Salvy, Wadim Zudilin