Sorting monoids on Coxeter groups

Florent Hivert1 Anne Schilling2 Nicolas M. Thiéry2,3

1LITIS/LIFAR, Université Rouen, France
2University of California at Davis, USA
3Laboratoire de Mathématiques d’Orsay, Université Paris Sud, France

FPSAC’10, San Francisco, August 3rd of 2010

arXiv:0711.1561 [math.RT] (FPSAC’06)
arXiv:0804.3781 [math.RT] (FPSAC’08)
arXiv:0912.2212 [math.CO] (FPSAC’10)
 + research in progress
Bubble (anti) sort algorithm

1234
Bubble (anti) sort algorithm

1234
Bubble (anti) sort algorithm

1243
Bubble (anti) sort algorithm

1423
Bubble (anti) sort algorithm

4123
Bubble (anti) sort algorithm

4123
Bubble sort and Coxeter groups The cutting poset The biHecke monoid Combinatorics Representation theory

Bubble (anti) sort algorithm

4132
Bubble (anti) sort algorithm

4312
Bubble sort and Coxeter groups The cutting poset The biHecke monoid Combinatorics Representation theory

Bubble (anti) sort algorithm

4312
Bubble (anti) sort algorithm

4321
Bubble (anti) sort algorithm

4321
Bubble (anti) sort algorithm

4321

Underlying combinatorics: right permutahedron
Bubble (anti) sort algorithm

4321

Underlying combinatorics: right permutahedron
Bubble (anti) sort algorithm

4321

Underlying combinatorics: right permutahedron

Elementary transpositions: s_1, s_2, s_3, \ldots
Bubble (anti) sort algorithm

4321

Underlying combinatorics: right permutahedron

Elementary transpositions: s_1, s_2, s_3, \ldots

Relations: $s_i^2 = 1, (s_1s_2)^3 = 1, (s_2s_3)^3 = 1, (s_1s_3)^2 = 1$
Coxeter groups

Definition (Coxeter group W)

Generators: s_1, s_2, \ldots (simple reflections)

Relations: $s_i^2 = 1$ and $s_i s_j \cdots = s_j s_i \cdots$, for $i \neq j$

Reduced words
0-Hecke monoid
0-Hecke monoid

\[\pi_1 \circ \pi_2 \]

\[s_1, s_2 \]

\[S_3 \]

\[H_0(\mathbb{S}_3) \]
0-Hecke monoid

\[\begin{array}{c}
\begin{array}{ccc}
321 & 321 \\
312 & 312 \\
231 & 231 \\
213 & 213 \\
132 & 132 \\
123 & 123 \\
\end{array}
\end{array} \]

\[\begin{array}{c}
\begin{array}{ccc}
\pi_1 & \pi_2 \\
\pi_2 & \pi_1 \\
\pi_1 & \pi_2 \\
\pi_2 & \pi_1 \\
\pi_1 & \pi_2 \\
\pi_2 & \pi_1 \\
\end{array}
\end{array} \]
0-Hecke monoid

\[
\begin{array}{ccc}
321 & & 321 \\
\downarrow s_1 & & \downarrow \pi_1 \\
231 & & 231 \\
\downarrow s_2 & & \downarrow \pi_2 \\
213 & & 213 \\
\downarrow s_1 & & \downarrow \pi_1 \\
123 & & 123 \\
\downarrow s_2 & & \downarrow \pi_2 \\
132 & & 132 \\
\end{array}
\]
0-Hecke monoid

\[S_3 \quad \xrightarrow{H_0(S_3)} \quad \bar{H}_0(S_3) \]
0-Hecke monoid

Definition (0-Hecke monoid $H_0(W)$ of a Coxeter group W)

Generators: $\langle \pi_1, \pi_2, \ldots \rangle$ (simple reflections)
Relations: $\pi_i^2 = \pi_i$ and braid relations

Theorem

$|H_0(W)| = |W|$ + lots of nice properties

Motivation: simple combinatorial model (bubble sort) appears in Iwahori-Hecke algebras, Schur symmetric functions, Schubert, Macdonald, Kazhdan-Lusztig polynomials, (affine) Stanley symmetric functions, mathematical physics, Schur-Weyl duality for quantum groups, representations of $GL(\mathbb{F}_q)$, ...
0-Hecke monoid

Definition (0-Hecke monoid $H_0(W)$ of a Coxeter group W)

Generators: $\langle \pi_1, \pi_2, \ldots \rangle$ (simple reflections)

Relations: $\pi_i^2 = \pi_i$ and braid relations

Theorem

$$|H_0(W)| = |W| + \text{lots of nice properties}$$

Motivation: simple combinatorial model (bubble sort) appears in Iwahori-Hecke algebras, Schur symmetric functions, Schubert, Macdonald, Kazhdan-Lusztig polynomials, (affine) Stanley symmetric functions, mathematical physics, Schur-Weyl duality for quantum groups, representations of $GL(\mathbb{F}_q)$, ...
0-Hecke monoid

Definition (0-Hecke monoid $H_0(W)$ of a Coxeter group W)

- **Generators**: $\langle \pi_1, \pi_2, \ldots \rangle$ (simple reflections)
- **Relations**: $\pi_i^2 = \pi_i$ and braid relations

Theorem

$|H_0(W)| = |W| + \text{lots of nice properties}$

Motivation: simple combinatorial model (bubble sort) appears in Iwahori-Hecke algebras, Schur symmetric functions, Schubert, Macdonald, Kazhdan-Lusztig polynomials, (affine) Stanley symmetric functions, mathematical physics, Schur-Weyl duality for quantum groups, representations of $GL(\mathbb{F}_q)$, ...
Classical orders on Coxeter groups

Right order
Classical orders on Coxeter groups

Right order

Prefix
Classical orders on Coxeter groups

Left order

Suffix

Right order

Prefix
Classical orders on Coxeter groups

Left order

Left-Right order

Right order

Suffix

Factor

Prefix
Classical orders on Coxeter groups

Left order

Left-Right order

Right order

Bruhat order

Suffix

Factor

Prefix

Subword
Blocks of permutations

Definition (Block of a permutation w)

- **Type A:** sub-permutation matrix
- **Type free:** J, K such that $W_J w = w W_K$

Example

Let $w := 36475812$

![Diagram of a permutation matrix](image)

- Simple permutation: cf. [Albert, Atkinson 05] + dim 2 posets
- $\{\text{blocks of } w\}$: sub-lattice of the Boolean lattice
Definition (Block of a permutation w)

- **Type A:** sub-permutation matrix
- **Type free:** J, K such that $W_Jw = wW_K$

- **Example:** $w := 36475812$

- Simple permutation: cf. [Albert, Atkinson 05] + dim 2 posets
- {blocks of w}: sub-lattice of the Boolean lattice
Blocks of permutations

Definition (Block of a permutation w)

- **Type A**: sub-permutation matrix
- **Type free**: J, K such that $W_J w = w W_K$

Example: $w := 36475812$

![Diagram of a permutation block]

- Simple permutation: cf. [Albert, Atkinson 05] + dim 2 posets
- $\{\text{blocks of } w\}$: sub-lattice of the Boolean lattice
Blocks of permutations

Definition (Block of a permutation w)

- **Type A:** sub-permutation matrix
- **Type free:** J, K such that $W_J w = w W_K$

- **Example:** $w := 36475812$

- **Simple permutation:** cf. [Albert, Atkinson 05] + dim 2 posets
- **{$\text{blocks of } w$}:** sub-lattice of the Boolean lattice
Blocks of permutations

Definition (Block of a permutation w)

- Type A: sub-permutation matrix
- Type free: J, K such that $W_J w = w W_K$

Example: $w := 36475812$

Simple permutation: cf. [Albert, Atkinson 05] + dim 2 posets

$\{\text{blocks of } w\}$: sub-lattice of the Boolean lattice
Blocks of permutations

Definition (Block of a permutation w)

- Type A: sub-permutation matrix
- Type free: J, K such that $W_J w = w W_K$

Example: $w := 36475812$

- Simple permutation: cf. [Albert, Atkinson 05] + dim 2 posets
- $\{\text{blocks of } w\}$: sub-lattice of the Boolean lattice
The cutting poset

Definition (HST09: Cutting poset (W, \trianglelefteq))

$u \trianglelefteq w$ if $u = w^J$ with J block

Theorem

- Intervals are lattices
- Möbius function: inclusion-exclusion along minimal blocks
- Meet-semi lattice?
The cutting poset

Definition (HST09: Cutting poset \((W, \sqsubseteq)\))

\[u \sqsubseteq w \text{ if } u = w^J \text{ with } J \text{ block} \]

Theorem

- *Intervals are lattices*
- *Möbius function: inclusion-exclusion along minimal blocks*
- *Meet-semi lattice?*
The cutting poset

Definition (HST09: Cutting poset \((W, \sqsubseteq)\))

\(u \sqsubseteq w\) if \(u = w^J\) with \(J\) block

Theorem

- *Intervals are lattices*
- *Möbius function: inclusion-exclusion along minimal blocks*
- Meet-semi lattice?
The cutting poset

Definition (HST09: Cutting poset \((W, \sqsubseteq)\))

\[u \sqsubseteq w \text{ if } u = w^J \text{ with } J \text{ block} \]

Theorem

- Intervals are lattices
- Möbius function: inclusion-exclusion along minimal blocks
- Meet-semi lattice?
The cutting poset

Definition (HST09: Cutting poset \((W, \sqsubseteq)\))

\[u \sqsubseteq w \text{ if } u = w^J \text{ with } J \text{ block} \]

Theorem

- *Intervals are (distributive?) lattices*
- *Möbius function: inclusion-exclusion along minimal blocks*
- Meet-semi lattice?
The cutting poset

Definition (HST09: Cutting poset \((W, \sqsubseteq)\))

\[u \sqsubseteq w \text{ if } u = w^J \text{ with } J \text{ block} \]

Theorem

- *Intervals are (distributive?) lattices*
- *Möbius function: inclusion-exclusion along minimal blocks*
- *Meet-semi lattice?*
The Big Picture

$$\text{NDPF}(\text{Bruhat}(W)) \quad \text{End}(<_L(W)) \quad \text{End}(\text{BooleanLattice})$$

$$M_1 \quad \langle \pi_1, \pi_2, \ldots, \bar{\pi}_1, \bar{\pi}_2, \ldots \rangle \quad \langle \pi_1, \pi_2, \ldots, s_1, s_2, \ldots \rangle$$

$$H_\zeta(\tilde{W}) \quad H_{-1}(\tilde{W}) \quad H_0(\tilde{W}) \quad H_0(\bar{W}) \quad H_0(\bar{W})$$

$$\langle \bar{\pi}_0 \pi_1, \pi_2, \ldots \rangle \quad \langle \bar{\pi}_0 \bar{\pi}_1, \pi_2, \ldots \rangle \quad \langle \pi_1, \pi_2, \ldots, s_1, s_2, \ldots \rangle \quad \langle \pi_0 \pi_1, \pi_2, \ldots \rangle$$

$$\tilde{W} \quad H^W \quad W \quad H_q(\tilde{W}) \quad H_q(W)$$

$$\langle s_0 s_1, s_2, \ldots \rangle \quad Q[\pi_1, \pi_2, \ldots, s_1, s_2, \ldots] \quad Q[\pi_1, \pi_2, \ldots, \bar{\pi}_1, \bar{\pi}_2, \ldots]$$

$$\langle \pi_1, \pi_2, \ldots, \bar{\pi}_1, \bar{\pi}_2, \ldots \rangle$$

$$H_\zeta(S_n) \otimes \wedge \quad TL_n \quad \text{NDPF}_n \quad \text{NDPF}_B$$

$$\text{NDPF}_n \quad \text{NDF}_n$$

$$S_n \otimes \wedge \quad H_q(S_n) \otimes \wedge$$
The biHecke monoid

<table>
<thead>
<tr>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size of $M(W) = \langle \pi_1, \pi_2, \ldots, \overline{\pi}_1, \overline{\pi}_2, \ldots \rangle$</td>
</tr>
<tr>
<td>$</td>
</tr>
</tbody>
</table>

- How to attack such a problem?
- Generators and relations?
- Representation theory?

<table>
<thead>
<tr>
<th>Theorem (HST08)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M(W)$ admits $</td>
</tr>
</tbody>
</table>

- Why do we care?

\[
|M(W)| = \sum_{w \in W} \dim S_w \cdot \dim P_w
\]
The biHecke monoid

Question

Size of $M(W) = \langle \pi_1, \pi_2, \ldots, \bar{\pi}_1, \bar{\pi}_2, \ldots \rangle$

$|M(S_n)| = 1, 3, 23, 477, 31103, ?$

- How to attack such a problem?
- Generators and relations?
- Representation theory?

Theorem (HST08)

$M(W)$ admits $|W|$ simple / indecomposable projective modules

- Why do we care?

$$|M(W)| = \sum_{w \in W} \dim S_w \cdot \dim P_w$$
The biHecke monoid

Question

Size of $M(W) = \langle \pi_1, \pi_2, \ldots, \bar{\pi}_1, \bar{\pi}_2, \ldots \rangle$

$|M(S_n)| = 1, 3, 23, 477, 31103, ?$

- How to attack such a problem?
- Generators and relations?
- Representation theory?

Theorem (HST08)

$M(W)$ admits $|W|$ simple / indecomposable projective modules

- Why do we care?

$$|M(W)| = \sum_{w \in W} \dim S_w \cdot \dim P_w$$
The biHecke monoid

Question

Size of $M(W) = \langle \pi_1, \pi_2, \ldots, \bar{\pi}_1, \bar{\pi}_2, \ldots \rangle$

$|M(S_n)| = 1, 3, 23, 477, 31103, \ldots$

• How to attack such a problem?
• Generators and relations?
• Representation theory?

Theorem (HST08)

$M(W)$ admits $|W|$ simple / indecomposable projective modules

Why do we care?

$|M(W)| = \sum_{w \in W} \dim S_w \cdot \dim P_w$
The biHecke monoid

Question

Size of $M(W) = \langle \pi_1, \pi_2, \ldots, \bar{\pi}_1, \bar{\pi}_2, \ldots \rangle$

$|M(S_n)| = 1, 3, 23, 477, 31103, \ldots$

- How to attack such a problem?
- Generators and relations?
- Representation theory?

Theorem (HST08)

$M(W)$ admits $|W|$ simple / indecomposable projective modules

- Why do we care?

\[
|M(W)| = \sum_{w \in W} \dim S_w \cdot \dim P_w
\]
The biHecke monoid

Question

Size of $M(W) = \langle \pi_1, \pi_2, \ldots, \overline{\pi}_1, \overline{\pi}_2, \ldots \rangle$

$|M(S_n)| = 1, 3, 23, 477, 31103, \ldots$

- How to attack such a problem?
- Generators and relations?
- Representation theory?

Theorem (HST08)

$M(W)$ admits $|W|$ simple / indecomposable projective modules

- Why do we care?

$$|M(W)| = \sum_{w \in W} \dim S_w \cdot \dim P_w$$
The biHecke monoid

Question

Size of $M(W) = \langle \pi_1, \pi_2, \ldots, \bar{\pi}_1, \bar{\pi}_2, \ldots \rangle$

$|M(S_n)| = 1, 3, 23, 477, 31103, ?$

- How to attack such a problem?
- Generators and relations?
- Representation theory?

Theorem (HST08)

$M(W)$ admits $|W|$ simple / indecomposable projective modules

- Why do we care?

$$|M(W)| = \sum_{w \in W} \dim S_w \cdot \dim P_w$$
Key combinatorial lemma

Lemma

For $f \in M(W)$ and $w \in W$: $(s_i w) . f = w . f$ or $s_i (w . f)$

Proof.

Exchange property / associativity
Key combinatorial lemma

Lemma

For $f \in M(W)$ and $w \in W$: \((s_i w).f = w.f\) or \(s_i (w.f)\)

Proof.

Exchange property / associativity
Key combinatorial lemma

Lemma

For $f \in M(W)$ and $w \in W$: $(s_i w).f = w.f$ or $s_i (w.f)$

Proof.

Exchange property / associativity
Lemma

For $f \in M(W)$ and $w \in W$: $(s_i w).f = w.f$ or $s_i (w.f)$

Proof.

Exchange property / associativity
Key combinatorial lemma

Lemma

For $f \in M(W)$ and $w \in W$:

$$(s_i w).f = w.f \quad \text{or} \quad s_i (w.f)$$

Proof.

Exchange property / associativity
Key combinatorial lemma

Lemma

For $f \in M(W)$ and $w \in W$: $(s_i w).f = w.f$ or $s_i (w.f)$

Proof.

Exchange property / associativity
Key combinatorial lemma

Corollary

- Preservation of left order: $u \leq_L v \implies u.f \leq_L v.f$
- Preservation of Bruhat order: $u \leq_B v \implies u.f \leq_B v.f$
- $M(W)$ is aperiodic
- f in $M(W)$ is determined by its fibers and $f(1)$
Key combinatorial lemma

Corollary

- **Preservation of left order**: \(u \leq_L v \implies u.f \leq_L v.f \)
- **Preservation of Bruhat order**: \(u \leq_B v \implies u.f \leq_B v.f \)
- \(M(W) \) is aperiodic
- \(f \) in \(M(W) \) is determined by its fibers and \(f(1) \)
Key combinatorial lemma

Corollary

- Preservation of left order: $u \leq_L v \implies u.f \leq_L v.f$
- Preservation of Bruhat order: $u \leq_B v \implies u.f \leq_B v.f$
- $M(W)$ is aperiodic
- f in $M(W)$ is determined by its fibers and $f(1)$
Key combinatorial lemma

- Preservation of left order: $u \leq_L v \implies u.f \leq_L v.f$
- Preservation of Bruhat order: $u \leq_B v \implies u.f \leq_B v.f$
- $M(W)$ is aperiodic
- f in $M(W)$ is determined by its fibers and $f(1)$
Key combinatorial lemma

Corollary

- Preservation of left order: $u \leq_L v \implies u.f \leq_L v.f$
- Preservation of Bruhat order: $u \leq_B v \implies u.f \leq_B v.f$
- $M(W)$ is aperiodic
- f in $M(W)$ is determined by its fibers and $f(1)$
Some elements of the monoid

Lemma

The image set of an idempotent is an interval in left order
Some elements of the monoid

```
Lemma
The image set of an idempotent is an interval in left order
```
Some elements of the monoid

Lemma

The image set of an idempotent is an interval in left order
Some elements of the monoid

Lemma

The image set of an idempotent is an interval in left order
Some elements of the monoid

Lemma

The image set of an idempotent is an interval in left order
Green relations
Green relations

Theorem

- **Regular \(J \)-classes are indexed by \(W \)
- \(J \)-order on regular classes: left-right order on \(W \)
- \(R \)-classes: intervals in right order on \(W \)
- \(R \)-order on regular \(R \)-classes: \(\approx \) right order on \(W \)
- \(L \)-order on regular \(L \)-classes: \(\approx \) left order on \(W \)

Problems

- \(L, R, J \)-order between non regular classes?
- \(L \)-classes?
Green relations

Theorem

- Regular \mathcal{J}-classes are indexed by W
- \mathcal{J}-order on regular classes: left-right order on W
- \mathcal{R}-classes: intervals in right order on W
- \mathcal{R}-order on regular \mathcal{R}-classes: \approx right order on W
- \mathcal{L}-order on regular \mathcal{L}-classes: \approx left order on W

Problems

- $\mathcal{L},\mathcal{R},\mathcal{J}$-order between non regular classes?
- \mathcal{L}-classes?
Green relations

Theorem

- Regular J-classes are indexed by W
- J-order on regular classes: left-right order on W
- R-classes: intervals in right order on W
- R-order on regular R-classes: \approx right order on W
- L-order on regular L-classes: \approx left order on W

Problems

- L,R,J-order between non regular classes?
- L-classes?
Green relations

Theorem

- Regular J-classes are indexed by W
- J-order on regular classes: left-right order on W
- R-classes: intervals in right order on W
- R-order on regular R-classes: \approx right order on W
- L-order on regular L-classes: \approx left order on W

Problems

- L,R,J-order between non regular classes?
- L-classes?
Green relations

Theorem

- Regular \mathcal{J}-classes are indexed by W
- \mathcal{J}-order on regular classes: left-right order on W
- \mathcal{R}-classes: intervals in right order on W
- \mathcal{R}-order on regular \mathcal{R}-classes: \approx right order on W
- \mathcal{L}-order on regular \mathcal{L}-classes: \approx left order on W

Problems

- $\mathcal{L},\mathcal{R},\mathcal{J}$-order between non regular classes?
- \mathcal{L}-classes?
Green relations

Theorem

- Regular \mathcal{J}-classes are indexed by W
- \mathcal{J}-order on regular classes: left-right order on W
- \mathcal{R}-classes: intervals in right order on W
- \mathcal{R}-order on regular \mathcal{R}-classes: \simeq right order on W
- \mathcal{L}-order on regular \mathcal{L}-classes: \simeq left order on W

Problems

- $\mathcal{L},\mathcal{R},\mathcal{J}$-order between non regular classes?
- \mathcal{L}-classes?
Corollary

\[M(W) \text{ admits } |W| \text{ simple modules / indecomposable projective modules} \]

Problem

Dimension of simple and indecomposable projective modules?
Corollary

$M(W)$ admits $|W|$ simple modules / indecomposable projective modules

Problem

Dimension of simple and indecomposable projective modules?
The “Borel” submonoid M_1

Definition

Submonoid $M_1 := \{ f \in M, f(1) = 1 \}$

Properties

- Weakly increasing and contracting on Bruhat $\implies J$-trivial
- Idempotents: $(e_w)_{w \in W}$
- Generated by e_w for w grassmanian, e.g. atom for (W, \vee_L)
- $|W|$ simple modules of dimension 1
- Semi-simple quotient: monoid algebra of (W, \vee_L)
- Conjugacy order among idempotents: $<_L$
- $\dim P_w = |\{ f \in M_1, f(w) \leq_L w \}| = ?$

Problem

Inducing these results to M?
The “Borel” submonoid M_1

Definition

Submonoid $M_1 := \{ f \in M, f(1) = 1 \}$

Properties

- **Weakly increasing and contracting on Bruhat \implies J-trivial**
- **Idempotents:** $(e_w)_{w \in W}$
- **Generated by** e_w **for** w **grassmanian, e.g. atom for** (W, \vee_L)
- **$|W|$ simple modules of dimension 1**
- **Semi-simple quotient:** monoid algebra of (W, \vee_L)
- **Conjugacy order among idempotents:** $<_L$
- $\dim P_w = |\{ f \in M_1, f(w) \leq_L w \}| = ?$

Problem

Inducing these results to M?
The “Borel” submonoid M_1

Definition

Submonoid $M_1 := \{ f \in M, f(1) = 1 \}$

Properties

- **Weakly increasing and contracting on Bruhat $\implies J$-trivial**
- **Idempotents:** $(e_w)_{w \in W}$
- **Generated by e_w for w grassmanian, e.g. atom for (W, \vee_L)**
- **$|W|$ simple modules of dimension 1**
- **Semi-simple quotient: monoid algebra of (W, \vee_L)**
- **Conjugacy order among idempotents:** $<_L$
- **dim $P_w = |\{ f \in M_1, f(w) \leq_L w \}| = ?$**

Problem

Inducing these results to M?
Definition (Translation algebra)

\(\mathcal{H} W^{(w)} := \mathbb{Q}[\pi_1, \pi_2, \ldots, \overline{\pi}_1, \overline{\pi}_2, \ldots] \) acting on \(\mathbb{Q}.[1, w]_R \)

- Blocks: \(J = \{\}, \{1, 2\}, \{3\}, \{1, 2, 3\} \implies \) Submodules \(P_J \)
- \(\mathcal{H} W^{(w)} \): max. algebra stabilizing all \(P_J \) \implies Repr. theory
- \(\mathcal{H} W^{(w)} \) quotient of \(\mathbb{Q}[M(W)] \); top: simple module \(S_w \) of \(M \)
- Dimension: inclusion-exclusion along the cutting poset
- Generating series calculation?
Definition (Translation algebra)

\[\mathcal{H} W(w) := \mathbb{Q}[\pi_1, \pi_2, \ldots, \bar{\pi}_1, \bar{\pi}_2, \ldots] \text{ acting on } \mathbb{Q} [1, w]_R \]

- Blocks: \(J = \{\}, \{1, 2\}, \{3\}, \{1, 2, 3\} \) \(\implies \) Submodules \(P_J \)
- \(\mathcal{H} W(w) \): max. algebra stabilizing all \(P_J \) \(\implies \) Repr. theory
- \(\mathcal{H} W(w) \) quotient of \(\mathbb{Q}[M(W)] \); top: simple module \(S_w \) of \(M \)
- Dimension: inclusion-exclusion along the cutting poset
- Generating series calculation?
R-classes and translation algebras

![Diagram of R-classes and translation algebras](image)

Definition (Translation algebra)

\[H_W(w) := \mathbb{Q}[\pi_1, \pi_2, \ldots, \bar{\pi}_1, \bar{\pi}_2, \ldots] \text{ acting on } \mathbb{Q} \cdot [1, w]_R \]

- **Blocks:** \(J = \{\}, \{1, 2\}, \{3\}, \{1, 2, 3\} \quad \Rightarrow \quad \text{Submodules } P_J \)
- **\(H_W(w) \):** max. algebra stabilizing all \(P_J \) \quad \Rightarrow \quad \text{Repr. theory}
- **\(H_W(w) \)** quotient of \(\mathbb{Q}[M(W)] \); top: simple module \(S_w \) of \(M \)
- **Dimension:** inclusion-exclusion along the cutting poset
- **Generating series calculation?**
Definition (Translation algebra)

\(\mathcal{H}W^{(w)} := \mathbb{Q}[\pi_1, \pi_2, \ldots, \bar{\pi}_1, \bar{\pi}_2, \ldots] \) acting on \(\mathbb{Q}.[1, w]_R \)

- Blocks: \(J = \{\}, \{1, 2\}, \{3\}, \{1, 2, 3\} \) \(\implies \) Submodules \(P_J \)
- \(\mathcal{H}W^{(w)} \): max. algebra stabilizing all \(P_J \) \(\implies \) Repr. theory
- \(\mathcal{H}W^{(w)} \) quotient of \(\mathbb{Q}[M(W)] \); top: simple module \(S_w \) of \(M \)
- Dimension: inclusion-exclusion along the cutting poset
- Generating series calculation?
Definition (Translation algebra)

\(\mathcal{H}W^{(w)} := \mathbb{Q}[\pi_1, \pi_2, \ldots, \overline{\pi}_1, \overline{\pi}_2, \ldots] \) acting on \(\mathbb{Q}.[1, w]_R \)

- Blocks: \(J = \{\}, \{1, 2\}, \{3\}, \{1, 2, 3\} \quad \Rightarrow \quad \text{Submodules } P_J \)
- \(\mathcal{H}W^{(w)} \): max. algebra stabilizing all \(P_J \quad \Rightarrow \quad \text{Repr. theory} \)
- \(\mathcal{H}W^{(w)} \) quotient of \(\mathbb{Q}[M(W)] \); top: simple module \(S_w \) of \(M \)
- Dimension: inclusion-exclusion along the cutting poset
- Generating series calculation?
Definition (Translation algebra)

\[\mathcal{H} W(w) := \mathbb{Q}[\pi_1, \pi_2, \ldots, \overline{\pi}_1, \overline{\pi}_2, \ldots] \text{ acting on } \mathbb{Q}.[1, w]_R \]

- Blocks: \(J = \{\}, \{1, 2\}, \{3\}, \{1, 2, 3\} \quad \Rightarrow \quad \text{Submodules } P_J \)
- \(\mathcal{H} W(w) \): max. algebra stabilizing all \(P_J \) \quad \Rightarrow \quad \text{Repr. theory}
- \(\mathcal{H} W(w) \) quotient of \(\mathbb{Q}[M(W)] \); top: simple module \(S_w \) of \(M \)
- Dimension: inclusion-exclusion along the cutting poset
- Generating series calculation?
Definition (Translation algebra)

\[\mathcal{H} W^{(w)} := \mathbb{Q}[\pi_1, \pi_2, \ldots, \overline{\pi}_1, \overline{\pi}_2, \ldots] \text{ acting on } \mathbb{Q} [1, w]_R \]

- Blocks: \(J = \{\}, \{1, 2\}, \{3\}, \{1, 2, 3\} \implies \text{Submodules } P_J \)
- \(\mathcal{H} W^{(w)} \): max. algebra stabilizing all \(P_J \implies \text{Repr. theory} \)
- \(\mathcal{H} W^{(w)} \) quotient of \(\mathbb{Q}[M(W)] \); top: simple module \(S_w \) of \(M \)
- Dimension: inclusion-exclusion along the cutting poset
- Generating series calculation?
Work in progress

- \mathcal{L}-classes? Projective modules? Cartan Matrix?

- Generalization to R-trivial and aperiodic monoids (collaboration with Denton and Berg, Bergeron, Saliola)

- Fast implementation in Sage (interface with Semigroupe, ...)

Sage-Combinat meeting tonight

Sage’s mission:

“To create a viable high-quality and open-source alternative to Maple™, Mathematica™, Magma™, and MATLAB™”

...

“and to foster a friendly community of users and developers”

Tonight, Thurston Hall, Room 236

- 7pm-8pm: Introduction to Sage and Sage-Combinat
- 8pm-10pm: Help on installation & getting started
 Bring your laptop!
- Design discussions