Cyclic sieving for longest reduced words in the hyperoctahedral group

Luis Serrano Université du Québec à Montréal

Joint work with Kyle Petersen (DePaul University)

FPSAC, San Francisco, California August, 2010

Longest words in the hyperoctahedral group

Hyperoctahedral group: B_n

Generators: $s_0, s_1, \ldots, s_{n-1}$

$$\text{Relations:} \left\{ \begin{array}{rcl} s_i^2 & = & 1 \\ s_i \, s_j & = & s_j \, s_i \; \; \text{for} \; \; |i-j| \geq 2 \\ s_i \, s_{i+1} \, s_i & = & s_{i+1} \, s_i \, s_{i+1} \; \; \text{for} \; \; i \geq 1 \\ s_0 \, s_1 \, s_0 \, s_1 & = & s_1 \, s_0 \, s_1 \, s_0. \end{array} \right\}$$

Longest element: w_0 , of length $\ell(w_0) = n^2$

 $R(w_0) = \{ \text{reduced words for } w_0 \}$

Cyclic rotation: $a_1 a_2 \cdots a_{n^2} \stackrel{\omega}{\mapsto} a_2 \cdots a_{n^2} a_1$

Q: What are the sizes of the orbits with respect to this action?

Example: B_3

Orbit of size 9:

$$\begin{array}{c} \stackrel{\omega}{\longrightarrow} \mathbf{0} \\ 10212012 \stackrel{\omega}{\longrightarrow} 10212012\mathbf{0} \stackrel{\omega}{\longrightarrow} 021201201 \stackrel{\omega}{\longrightarrow} 212012010 \\ \stackrel{\omega}{\longrightarrow} 120120102 \stackrel{\omega}{\longrightarrow} 201201021 \stackrel{\omega}{\longrightarrow} 012010212 \stackrel{\omega}{\longrightarrow} 120102120 \\ \stackrel{\omega}{\longrightarrow} 201021201 \stackrel{\omega}{\longrightarrow} \end{array}$$

Orbit of size 3:

$$\stackrel{\omega}{\longrightarrow} \mathbf{0}12012012 \stackrel{\omega}{\longrightarrow} 12012012\mathbf{0} \stackrel{\omega}{\longrightarrow} 201201201 \stackrel{\omega}{\longrightarrow}$$

42 words in $R(w_0)$:

- 42 words fixed by 0 rotations,
- 6 words fixed by 3 rotations (example: 012012012),
- 6 words fixed by 6 rotations,
- ▶ 0 words fixed by any other number of rotations (mod 9),

Square Young tableaux

 $SYT(n^n) = \{ Standard Young tableaux of shape n^n \}$

Promotion:

So

Example: $SYT(3^3)$

Promotion orbit of size 3

42 tableaux in $SYT(3^3)$:

- 42 tableaux fixed by 0 promotions,
- ▶ 6 tableaux fixed by 3 promotions,
- 6 tableaux fixed by 6 promotions,
- ▶ 0 tableaux fixed by any other number of promotions (mod 9),

Cyclic sieving phenomenon (CSP)

X a set.

 $C = \langle \omega \rangle$ a finite cyclic group acting on X.

 $X(q) \in \mathbb{Z}(q)$ a polynomial in q.

The triple (X, C, X(q)) exhibits CSP if for all $d \ge 0$, the number of elements fixed by ω^d is $X(\zeta^d)$, where ζ is a primitive root of unity of order |C|.

Cyclic sieving in $SYT(n^n)$

Theorem (Rhoades)

The following triple exhibits CSP:

$$X = SYT(n^n)$$
 $\omega = promotion$
 $X(q) = \frac{[n^2]!_q}{\prod_{(i,j)\in(n^n)} [h_{i,j}]_q}$ (the q-hook polynomial)

In
$$SYT(3^3)$$
, for $\zeta = e^{\frac{2i\pi}{9}}$

$$X(\zeta^0) = X(1) = 42,$$

•
$$X(\zeta^3) = 6$$
,

►
$$X(\zeta^6) = 6$$
,

•
$$X(\zeta^i) = 0$$
 for $i \neq 0, 3$, or 6 (mod 9).

Main theorem

Major index: sum of the positions of the descents

$$w = 0$$
10**2**1**2**012 maj(w) = 2 + 4 + 6 = 12

Theorem (Petersen - Serrano)

The following triple exhibits CSP:

$$X = R(w_0)$$
 (the set of reduced words for w_0)

$$\omega = {\it cyclic rotation}$$

$$X(q) = q^{-n\binom{n}{2}} \sum_{w \in R(w_0)} q^{\mathsf{maj}(w)}$$

Sketch of proof of the main theorem

- ▶ Bijection H between $R(w_0)$ and $SYT(n^n)$.
- H behaves well with respect to CSP.
 - Cyclic rotation corresponds to promotion.
 - Polynomials are the same.
- CSP follows from Rhoades's theorem.
- ▶ Note: The bijection goes through an intermediate object: double staircases.

Shifted double staircases

 $SYT'(2n-1,2n-3,\ldots,1)=\{\text{shifted double staircases}\}$ Promotion:

1	2	4	6	9		2	4	6	9	idt	2	3	4	6	9		1	2	3	5	8
	3	5	8		\longrightarrow	3	5	8		\xrightarrow{Jdt}		5	7	8		\longrightarrow		4	6	7	
		7					7												9		

So

Bijection between longest reduced words and shifted double staircases (Haiman)

Define
$$H_1 \begin{pmatrix} \boxed{1 & 2 & 4 & 6 & 9} \\ \boxed{3 & 5 & 8} \\ \boxed{7} \end{pmatrix} = s_0 s_1 s_0 s_2 s_1 s_2 s_0 s_1 s_2$$
. (or 010212012)

Bijection between shifted double staircases and square Young tableaux

Theorem (Haiman)

The sets $SYT(n^n)$ and $SYT'(2n-1,2n-3,\ldots,1)$ are in bijection.

Example

Bijection:

	1	2	4	idt [•	1	2	4	id+	•	1	2	4	9	id+	1	2	4	6	9
 •	3	5	6	$\stackrel{Jat}{\longrightarrow}$	3	5	6	9	$\xrightarrow{\text{Jdt}}$		3	5	6		\xrightarrow{Jdt}		3	5	8	
	7	8	9			7	8					7	8					7		

Proof of the main theorem

Lemma (Petersen - Serrano)

 $H_1 \circ H_2$ takes promotion in $SYT(n^n)$ to cyclic rotation in $R(w_0)$.

Lemma (Petersen - Serrano)

The q-hook polynomial in for (n^n) is $q^{-n\binom{n}{2}}$ times the major index generating function in $R(w_0)$.

$$\frac{[n^2!]_q}{\prod_{(i,j)\in(n^n)}[h_{i,j}]_q} = q^{-n\binom{n}{2}} \sum_{w\in R(w_0)} q^{\mathsf{maj}(w)}.$$

Questions

- Is there an explicit CSP for the set of shifted double staircases?
- Are there similar CSP results for longest words in other Coxeter groups?
- ▶ Rhoades's Theorem is the type A version of a more general conjecture regarding cominuscule posets. This has been proved for all finite types except B_n and checked [Dilks, Petersen, Stembridge, Yong] for B_n with $n \le 6$.

References

T. Kyle Petersen and Luis Serrano, *Cyclic sieving for longest reduced words in the hyperoctahedral group.* arXiv: 0905.2650.