# Fully Packed Loop Configurations and Littlewood–Richardson coefficients

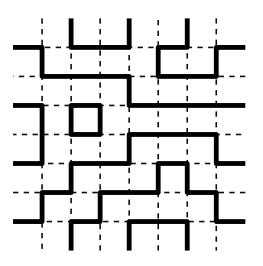
# Philippe Nadeau

Faculty of Mathematics, University of Vienna

FPSAC 22, San Francisco, August 4th 2010.

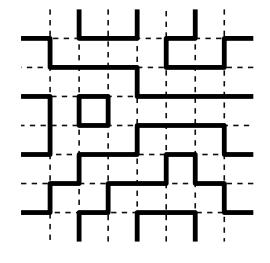
# Rough Outline

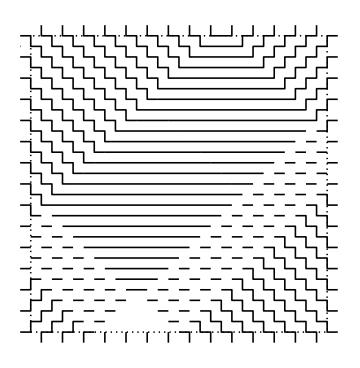
Fully Packed Loops in a square grid



# Rough Outline

Fully Packed Loops in a square grid

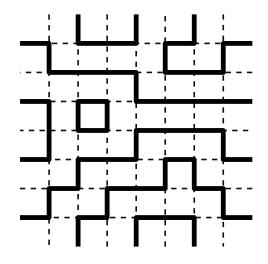


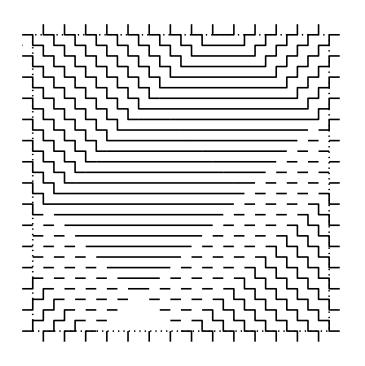


From the square to the triangle

# Rough Outline

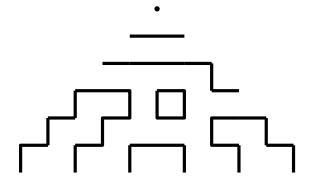
Fully Packed Loops in a square grid





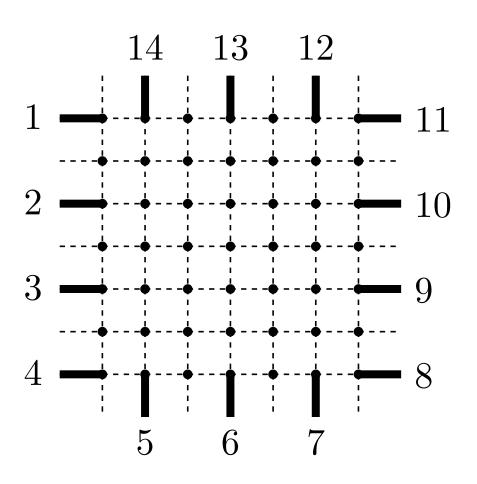
From the square to the triangle

Fully Packed Loops in a triangle



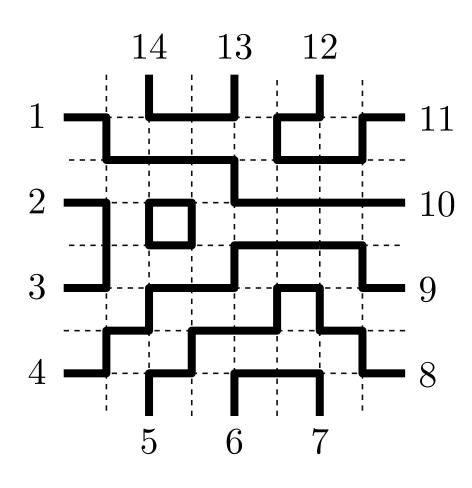
# FPL configurations : Definition

Start with the square grid  $G_n$  with  $n^2$  vertices and 4n external edges, and pick every other edge on the boundary (starting with the topmost on the left).



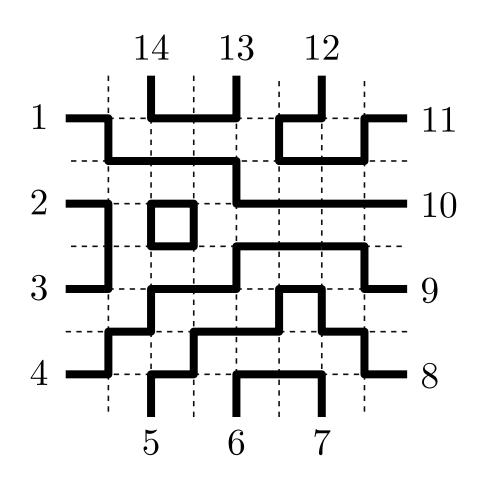
# FPL configurations : Definition

Start with the square grid  $G_n$  with  $n^2$  vertices and 4n external edges, and pick every other edge on the boundary (starting with the topmost on the left).

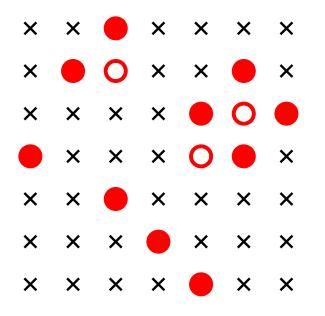


A Fully Packed Loop (FPL) configuration of size n is a subgraph of  $G_n$  with exactly 2 edges incident to each vertex.

FPL configurations are in simple bijection with numerous objects: alternating sign matrices (ASMs), height matrices, configurations of the six vertex model, Gog triangles,...



FPL configurations are in simple bijection with numerous objects: alternating sign matrices (ASMs), height matrices, configurations of the six vertex model, Gog triangles,...

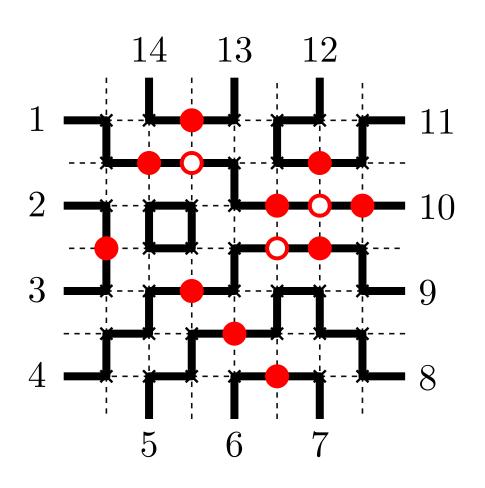


FPL of size n



ASMs of size n

FPL configurations are in simple bijection with numerous objects: alternating sign matrices (ASMs), height matrices, configurations of the six vertex model, Gog triangles,...

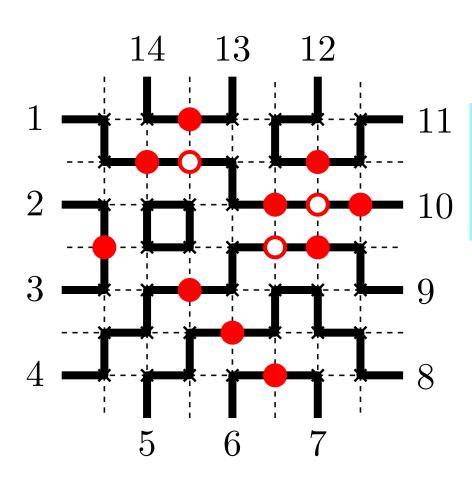


FPL of size n



ASMs of size n

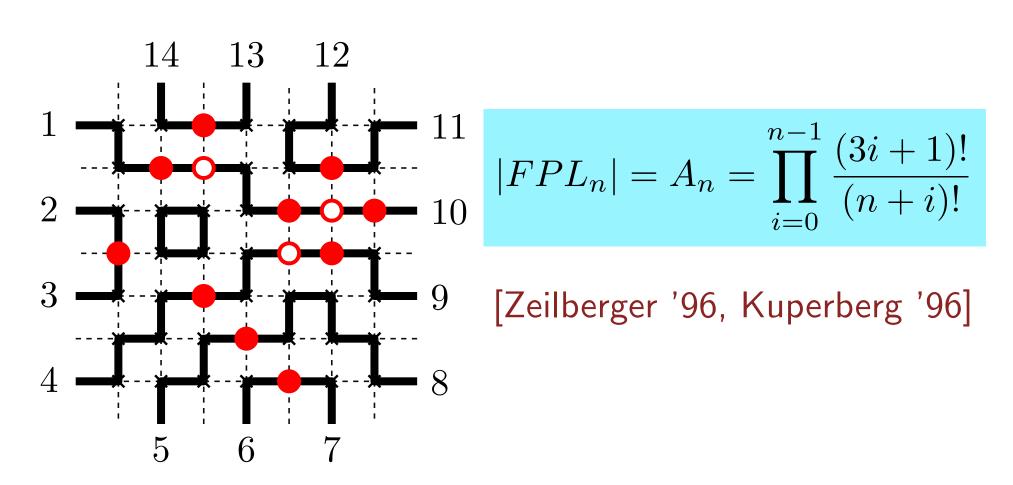
FPL configurations are in simple bijection with numerous objects: alternating sign matrices (ASMs), height matrices, configurations of the six vertex model, Gog triangles,...



$$|FPL_n| = A_n = \prod_{i=0}^{n-1} \frac{(3i+1)!}{(n+i)!}$$

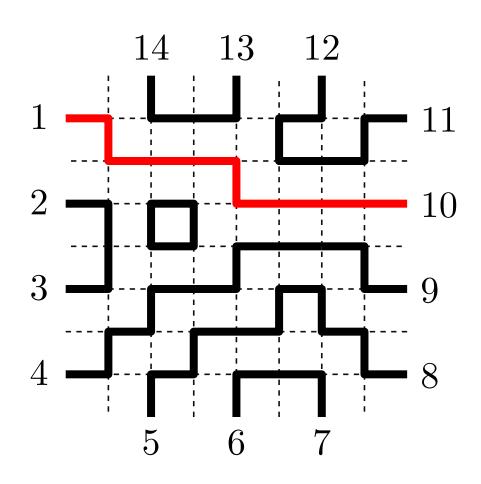
[Zeilberger '96, Kuperberg '96]

FPL configurations are in simple bijection with numerous objects: alternating sign matrices (ASMs), height matrices, configurations of the six vertex model, Gog triangles,...

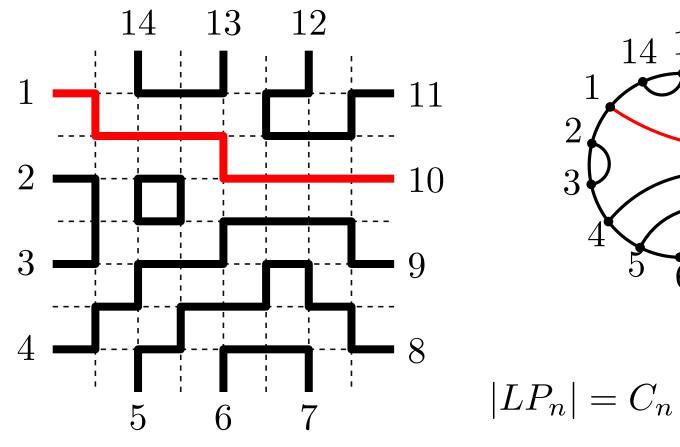


Why study FPLs rather than ASMs?

Every FPL configuration determines a link pattern on the external edges of the grid  $G_n$ , where link pattern = set of n noncrossing chords between 2n labeled points on a disk.



Every FPL configuration determines a link pattern on the external edges of the grid  $G_n$ , where link pattern = set of n noncrossing chords between 2n labeled points on a disk.



$$|LP_n| = C_n := \frac{1}{n+1} \binom{2n}{n}$$

Main problem : given a link pattern X, how many FPL configurations induce the link pattern X?

We note  $A_X$  this number.

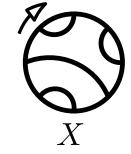
If 
$$X = \begin{pmatrix} 6 \\ 2 \\ 3 \end{pmatrix} \begin{pmatrix} 5 \\ 4 \end{pmatrix}$$
  $A_X = 2$   $\begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix} \begin{pmatrix} 5 \\ 4 \end{pmatrix} \begin{pmatrix} 5 \\ 2 \\ 4 \end{pmatrix} \begin{pmatrix} 5 \\ 4 \end{pmatrix} \begin{pmatrix} 5 \\ 2 \\ 4 \end{pmatrix} \begin{pmatrix} 5 \\ 4 \end{pmatrix}$ 

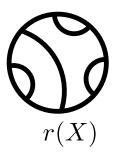
Main problem : given a link pattern X, how many FPL configurations induce the link pattern X?

We note  $A_X$  this number.

If 
$$X = \begin{bmatrix} 6 \\ 2 \\ 3 \end{bmatrix}$$
  $A_X = 2$   $\begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$   $\begin{bmatrix} 5 \\ 4 \\ 2 \end{bmatrix}$   $\begin{bmatrix} 5 \\ 4 \\ 2 \end{bmatrix}$   $\begin{bmatrix} 5 \\ 4 \\ 3 \end{bmatrix}$ 

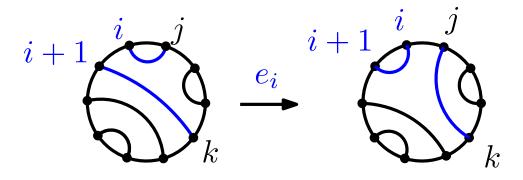
**Wieland's rotation** Given a link pattern X, consider the rotated pattern r(X) obtained by  $\{i,j\} \mapsto \{i+1,j+1\}$ . Then  $A_X = A_{r(X)}$ .





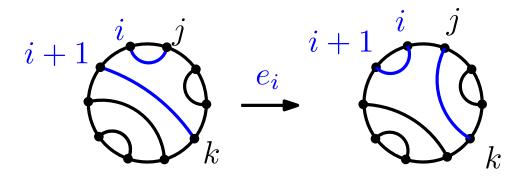
# The Razumov-Stroganov correspondence

For i = 1 ... 2n let  $e_i$  act on link patterns by  $\{i, j\}, \{i + 1, k\} \in X \to \{i, i + 1\}, \{j, k\} \in e_i(X)$ .



# The Razumov-Stroganov correspondence

For i = 1 ... 2n let  $e_i$  act on link patterns by  $\{i, j\}, \{i + 1, k\} \in X \to \{i, i + 1\}, \{j, k\} \in e_i(X)$ .

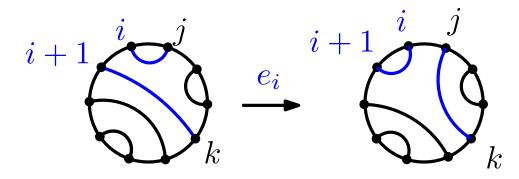


### RS correspondence [RS '01, Cantini and Sportiello '10]:

$$\forall X, \quad 2nA_X = \sum_{(i,Y),e_i(Y)=X} A_Y$$

# The Razumov-Stroganov correspondence

For i = 1 ... 2n let  $e_i$  act on link patterns by  $\{i, j\}, \{i + 1, k\} \in X \to \{i, i + 1\}, \{j, k\} \in e_i(X)$ .



### RS correspondence [RS '01, Cantini and Sportiello '10]:

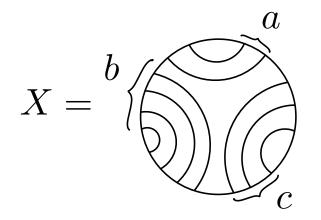
$$\forall X, \quad 2nA_X = \sum_{(i,Y),e_i(Y)=X} A_Y$$

These relations completely characterize the  $A_X$ .

Di Francesco and Zinn Justin had previously obtained results on the solutions of these relations

 $\rightarrow$  these are now applicable to the quantities  $A_X$ .

# Link patterns X with nice expressions for $A_X$



$$A_X = \prod_{i=1}^{a} \prod_{j=1}^{b} \prod_{k=1}^{c} \frac{i+j+k-1}{i+j+k-2}$$

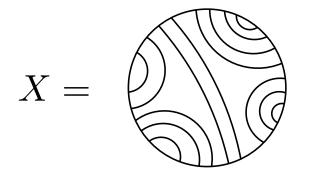
[Zinn-Justin, Zuber, Di Francesco]

# Link patterns X with nice expressions for $A_X$

$$X = b$$

$$A_X = \prod_{i=1}^{a} \prod_{j=1}^{b} \prod_{k=1}^{c} \frac{i+j+k-1}{i+j+k-2}$$

[Zinn-Justin, Zuber, Di Francesco]



 $A_X =$ Complicated determinant formula

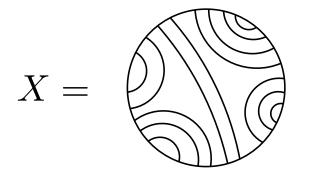
[Caselli and Krattenthaler '04, Zinn-Justin '08]

# Link patterns X with nice expressions for $A_X$

$$X = b$$

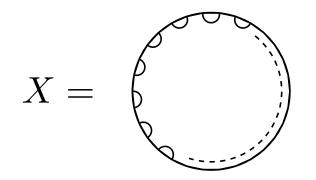
$$A_X = \prod_{i=1}^{a} \prod_{j=1}^{b} \prod_{k=1}^{c} \frac{i+j+k-1}{i+j+k-2}$$

[Zinn-Justin, Zuber, Di Francesco]



 $A_X =$ Complicated determinant formula

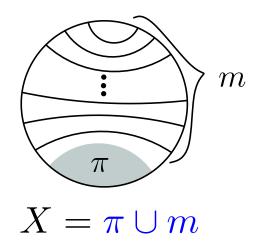
[Caselli and Krattenthaler '04, Zinn-Justin '08]



$$A_X = A_{n-1}.$$

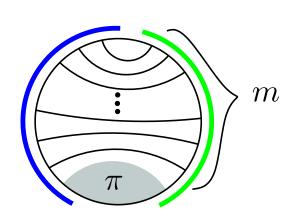
[Di Francesco and Z-J, Cantini and Sportiello]

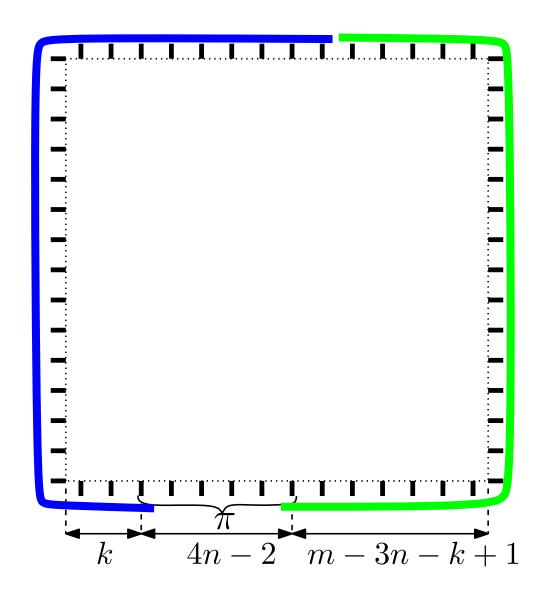
We consider now integers  $n, m \geq 0$ , and link patterns with m nested arches, and  $\pi$  is a noncrossing matching with n arches.



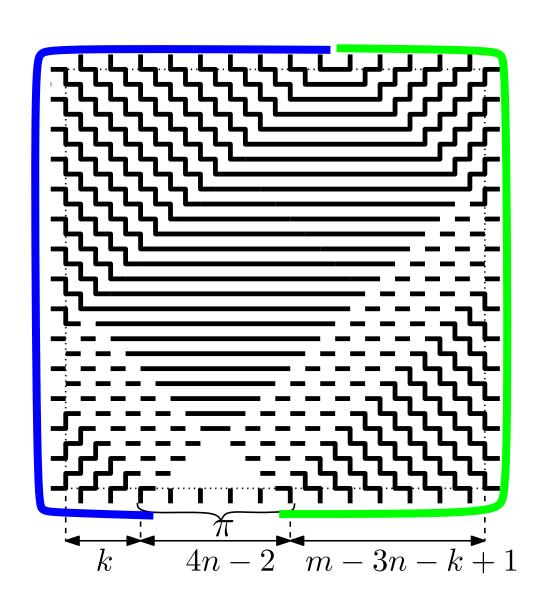
We will determine an expression for  $A_{\pi \cup m}$ , based on FPLs in a triangle. ( $\rightarrow$  The case m=0 gives the usual numbers  $A_X$ .)

We suppose  $m \ge 3n - 1$ , and choose k such that  $0 \le k \le m - (3n - 1)$ .



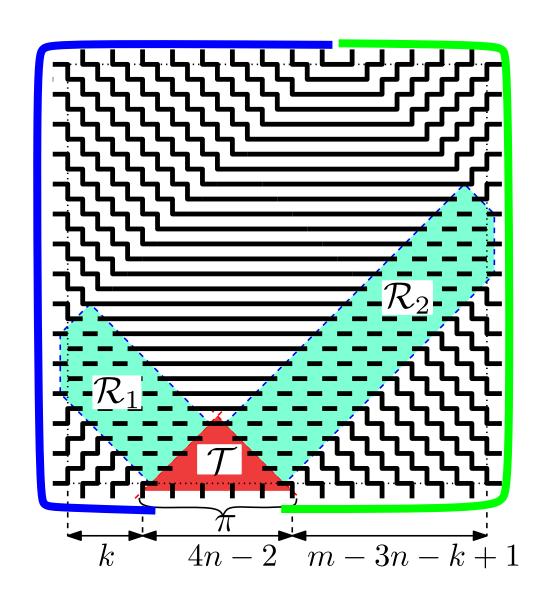


Fixed edges based on a lemma from [de Gier, '02].



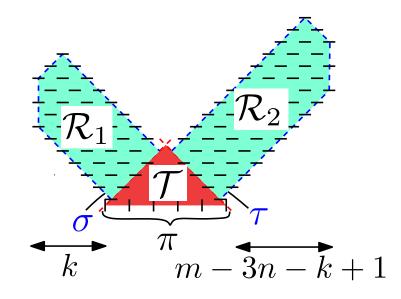
Fixed edges based on a lemma from [de Gier, '02].

Three regions appear



We can then write, for  $m \geq 3n-1$  and  $0 \leq k \leq m-(3n-1)$ 

$$A_{\pi \cup m} = \sum_{\sigma, \tau} |\mathcal{R}_1(\sigma, k)| \times t_{\sigma, \tau}^{\pi} \times |\mathcal{R}_2(\tau, m - 3n - k + 1)|$$

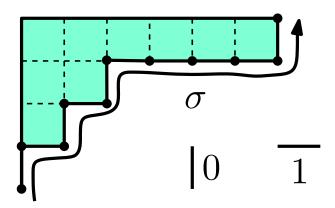


- ullet  $\sigma, au$  are words of length 2n on  $\{0,1\}$ ;
- $\mathcal{R}_1(\sigma,.), \mathcal{R}_2(\tau,.)$  are the sets of FPLs in  $\mathcal{R}_1$  and  $\mathcal{R}_2$ .
- ullet  $t_{\sigma,\tau}^{\pi}$  is the number of FPL configurations in the triangle  $\mathcal{T}$ .

Let  $\sigma = \sigma_1 \dots \sigma_p$  be a word in  $\{0,1\}^p$ ; we write  $|\sigma| := p$ .

Words  $\leftrightarrow$  Ferrers shapes in a box.

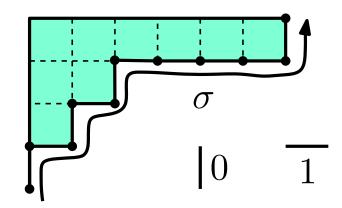
Example :  $\sigma = 01010111110$ , so  $|\sigma| = 10, |\sigma|_0 = 4, |\sigma|_1 = 6$ .



Let  $\sigma = \sigma_1 \dots \sigma_p$  be a word in  $\{0,1\}^p$ ; we write  $|\sigma| := p$ .

Words  $\leftrightarrow$  Ferrers shapes in a box.

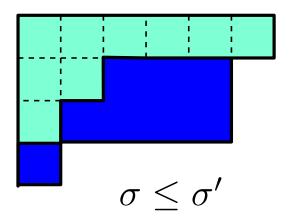
Example :  $\sigma = 01010111110$ , so  $|\sigma| = 10, |\sigma|_0 = 4, |\sigma|_1 = 6$ .

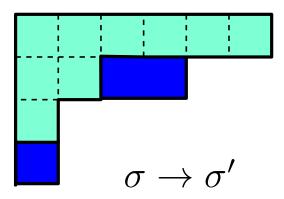


 $d(\sigma) :=$  the number of boxes in the diagram  $\sigma$ .

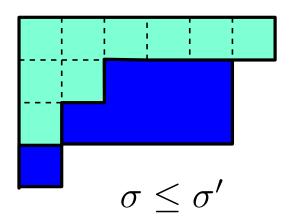
$$\sigma^* := (1 - \sigma_p) \cdots (1 - \sigma_2)(1 - \sigma_1)$$

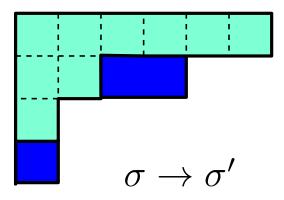
In the example,  $d(\sigma) = 9$  and  $\sigma^* = 1000010101$ .





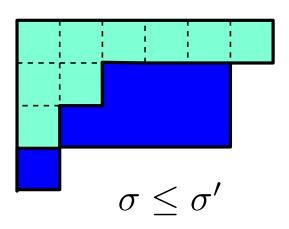
At most one more box per column

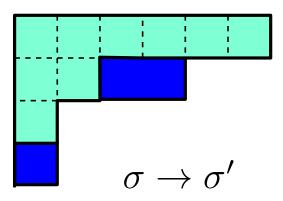




At most one more box per column

A semi standard Young tableau of shape  $\sigma$  and entries bounded by N is a filling of the shape  $\sigma$  by integers in  $\{1,\ldots,N\}$  such that entries are strictly increasing in columns and weakly increasing in rows.





At most one more box per column

A semi standard Young tableau of shape  $\sigma$  and entries bounded by N is a filling of the shape  $\sigma$  by integers in  $\{1,\ldots,N\}$  such that entries are strictly increasing in columns and weakly increasing in rows.

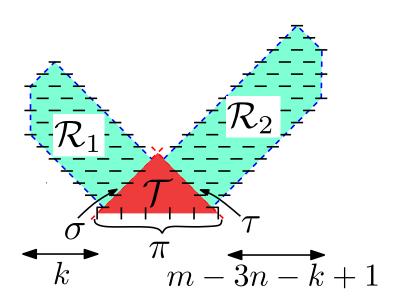
The number of such tableaux is given by  $SSYT(\sigma, N)$ , an explicit polynomial in N with leading term  $\frac{1}{H(\sigma)}N^{d(\sigma)}$ .

(Here  $H(\sigma)$  is the product of *hook lengths* of the shape  $\sigma$ .)

# Regions $\mathcal{R}_1$ and $\mathcal{R}_2$

#### Proposition [Caselli, Krattenthaler, Lass, N. '05]

Let  $\sigma$  be a word of length 2n, and  $k \in \mathbb{N}$ . There is a bijection between FPLs in  $\mathcal{R}_1(\sigma, k)$  and semistandard Young tableaux of shape  $\sigma$  and length n+k.



# Regions $\mathcal{R}_1$ and $\mathcal{R}_2$

#### Proposition [Caselli, Krattenthaler, Lass, N. '05]

Let  $\sigma$  be a word of length 2n, and  $k \in \mathbb{N}$ . There is a bijection between FPLs in  $\mathcal{R}_1(\sigma, k)$  and semistandard Young tableaux of shape  $\sigma$  and length n+k.

So for  $m \ge 3n - 1$  (and k = 0) we obtain :

$$A_{\pi \cup m} = \sum_{\sigma, \tau} |\mathcal{R}_1(\sigma, 0)| \cdot t_{\sigma, \tau}^{\pi} \cdot |\mathcal{R}_2(\tau, m - 3n + 1)|$$
$$= \sum_{\sigma, \tau} SSYT(\sigma, n) \cdot t_{\sigma, \tau}^{\pi} \cdot SSYT(\tau^*, m - 2n + 1)$$

# Regions $\mathcal{R}_1$ and $\mathcal{R}_2$

#### Proposition [Caselli, Krattenthaler, Lass, N. '05]

Let  $\sigma$  be a word of length 2n, and  $k \in \mathbb{N}$ . There is a bijection between FPLs in  $\mathcal{R}_1(\sigma, k)$  and semistandard Young tableaux of shape  $\sigma$  and length n+k.

So for  $m \ge 3n - 1$  (and k = 0) we obtain :

$$A_{\pi \cup m} = \sum_{\sigma, \tau} |\mathcal{R}_1(\sigma, 0)| \cdot t_{\sigma, \tau}^{\pi} \cdot |\mathcal{R}_2(\tau, m - 3n + 1)|$$
$$= \sum_{\sigma, \tau} SSYT(\sigma, n) \cdot t_{\sigma, \tau}^{\pi} \cdot SSYT(\tau^*, m - 2n + 1)$$

#### Theorem [CKLN '05]

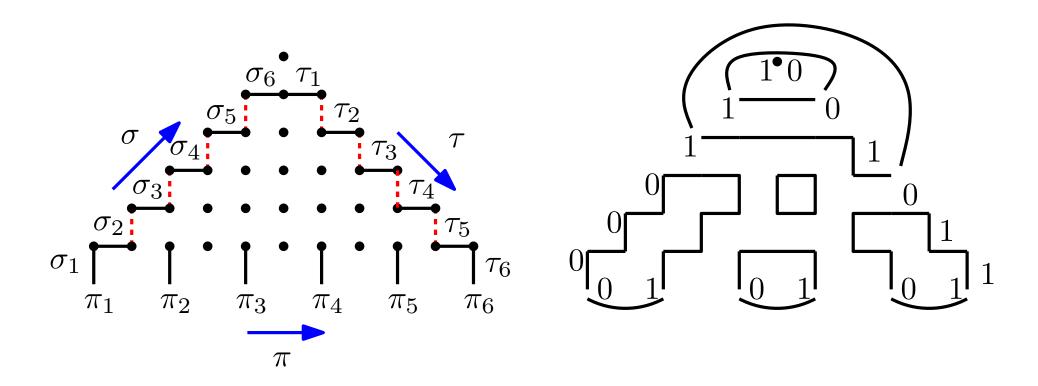
 $A_{\pi \cup m}$  is a polynomial function of m for  $m \geq 0$ 

More precisely,  $A_{\pi \cup m}$  has leading term  $\frac{1}{H(\pi)}m^{d(\pi)}$ .

# The triangle $\mathcal{T}_n$

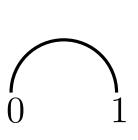
We call TFPLs (Triangular FPLs) the configurations in the triangular counted by  $t^{\pi}_{\sigma,\tau}$ :

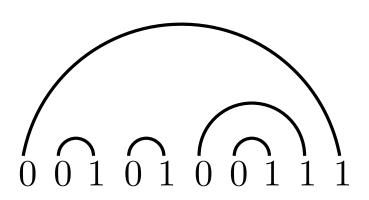
- $\sigma$  and  $\tau$  encode the presence of vertical edges on the left and right boundary;
- $\pi$  encodes a matching between the lower external edges.

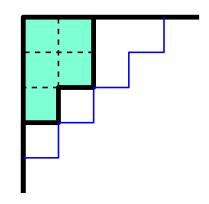


#### Some more definitions

Given a noncrossing matching  $\pi$  of size n, we can associate to it a word, and thus a Ferrers shape :

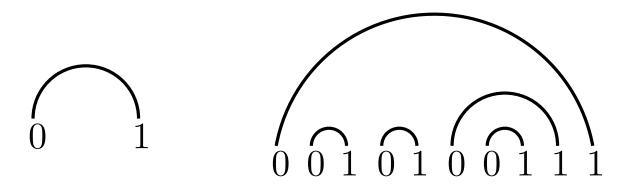


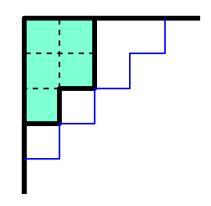




#### Some more definitions

Given a noncrossing matching  $\pi$  of size n, we can associate to it a word, and thus a Ferrers shape :





We note  $\mathcal{D}_n$  the words w such that  $|w|_0 = |w|_1 = n$  and which are smaller than  $(01)^n$ .

 $(\mathcal{D}_n, \leq)$  forms a poset with minimum  $\mathbf{0}_n := 0^n 1^n$  and maximum  $\mathbf{1}_n := 0101 \cdots 01$ .

## Some properties of TFPLs

## Theorem [N '09]

$$\sum_{\substack{\sigma_1 \in \mathcal{D}_n \\ \sigma \to \sigma_1}} t_{\sigma_1,\tau}^{\pi} = \sum_{\substack{\tau_1 \in \mathcal{D}_n \\ \tau^* \to \tau_1^*}} t_{\sigma,\tau_1}^{\pi}.$$

The proof is based on Wieland's rotation.

## Some properties of TFPLs

## Theorem [N '09]

$$\sum_{\substack{\sigma_1 \in \mathcal{D}_n \\ \sigma \to \sigma_1}} t_{\sigma_1,\tau}^{\pi} = \sum_{\substack{\tau_1 \in \mathcal{D}_n \\ \tau^* \to \tau_1^*}} t_{\sigma,\tau_1}^{\pi}.$$

The proof is based on Wieland's rotation.

### Theorem [CKLN '05, N '09]

For all  $\sigma, \tau, \pi$ , we have  $t_{\sigma,\tau}^{\pi} = 0$  unless  $\sigma \leq \pi$ . Moreover,  $t_{\pi,\mathbf{0}_n}^{\pi} = 1$  and  $t_{\pi\tau}^{\pi} = 0$  if  $\tau \neq \mathbf{0}_n$ .

The leading term of  $A_{\pi \cup m}$  is an immediate consequence of this result.

## Some properties of TFPLs

## Theorem [N '09]

$$\sum_{\substack{\sigma_1 \in \mathcal{D}_n \\ \sigma \to \sigma_1}} t_{\sigma_1,\tau}^{\pi} = \sum_{\substack{\tau_1 \in \mathcal{D}_n \\ \tau^* \to \tau_1^*}} t_{\sigma,\tau_1}^{\pi}.$$

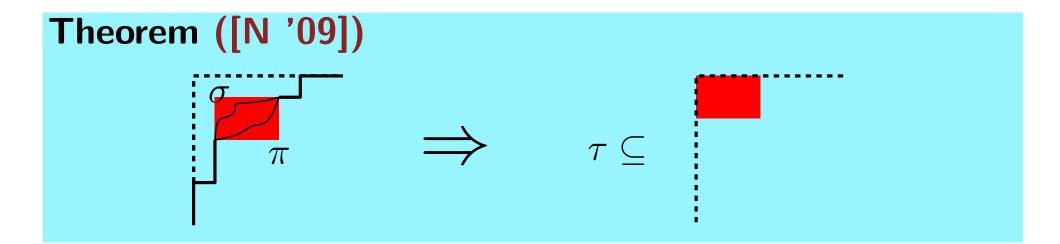
The proof is based on Wieland's rotation.

#### Theorem [CKLN '05, N '09]

For all  $\sigma, \tau, \pi$ , we have  $t^{\pi}_{\sigma, \tau} = 0$  unless  $\sigma \leq \pi$ .

Moreover,  $t_{\pi,\mathbf{0}_n}^{\pi}=1$  and  $t_{\pi\tau}^{\pi}=0$  if  $\tau\neq\mathbf{0}_n$ .

The leading term of  $A_{\pi \cup m}$  is an immediate consequence of this result.



## Extremal configurations

Thapper proved another important nonvanishing constraint :

$$t^{\pi}_{\sigma,\tau} = 0 \text{ unless } d(\sigma) + d(\tau) \leq d(\pi)$$

## Extremal configurations

Thapper proved another important nonvanishing constraint :

$$t^\pi_{\sigma,\tau} = 0 \text{ unless } d(\sigma) + d(\tau) \leq d(\pi)$$

Following his idea, one obtains the following identity in the extremal case  $d(\sigma)+d(\tau)=d(\pi)$ :

$$\frac{1}{H(\pi)} = \sum_{\substack{\sigma, \tau \in \mathcal{D}_n \\ d(\sigma) + d(\tau) = d(\pi)}} t_{\sigma, \tau}^{\pi} \cdot \frac{1}{2^{d(\sigma)}H(\sigma)} \cdot \frac{1}{2^{d(\tau)}H(\tau)}$$

## Extremal configurations

Thapper proved another important nonvanishing constraint :

$$t^\pi_{\sigma,\tau} = 0 \text{ unless } d(\sigma) + d(\tau) \leq d(\pi)$$

Following his idea, one obtains the following identity in the extremal case  $d(\sigma)+d(\tau)=d(\pi)$ :

$$\frac{1}{H(\pi)} = \sum_{\substack{\sigma, \tau \in \mathcal{D}_n \\ d(\sigma) + d(\tau) = d(\pi)}} t_{\sigma, \tau}^{\pi} \cdot \frac{1}{2^{d(\sigma)}H(\sigma)} \cdot \frac{1}{2^{d(\tau)}H(\tau)}$$

We name extremal the TFPL with boundaries  $\{\sigma, \pi, \tau\}$  verifying  $d(\sigma) + d(\tau) = d(\pi)$ .

Let  $\lambda, \mu, \nu$  be partitions, and  $\Lambda(x)$  be the ring of symmetric functions of the variables  $x_1, x_2, \ldots$  The Schur functions  $s_{\lambda}(x)$  can be defined as

$$s_{\lambda}(x) = \sum_{T} \prod_{i} x_{i}^{T_{i}},$$

where T goes through all semistandard Young tableaux of shape  $\lambda$ , and  $T_i$  is the number of cells labeled i.

Let  $\lambda, \mu, \nu$  be partitions, and  $\Lambda(x)$  be the ring of symmetric functions of the variables  $x_1, x_2, \ldots$  The Schur functions  $s_{\lambda}(x)$  can be defined as

$$s_{\lambda}(x) = \sum_{T} \prod_{i} x_{i}^{T_{i}},$$

where T goes through all semistandard Young tableaux of shape  $\lambda$ , and  $T_i$  is the number of cells labeled i.

Schur functions form a basis of  $\Lambda(x)$ . We can expand  $s_{\mu}(x)s_{\nu}(x)$  on this basis, where the coefficients  $c_{\mu,\nu}^{\lambda}$  are often called the Littlewood-Richardson (LR) coefficients.

$$s_{\mu}(x)s_{\nu}(x) = \sum_{\lambda} c_{\mu,\nu}^{\lambda} s_{\lambda}(x)$$

We have

$$c_{\mu,\nu}^{\lambda}=0$$
 unless  $d(\lambda)=d(\mu)+d(\nu)$  and  $\mu,\nu\subseteq\lambda$ 

We have also, if  $s_{\lambda}(x,y)$  is the symmetric function  $s_{\lambda}$  in the variables  $x_1, x_2, \ldots, y_1, y_2, \ldots$ 

$$s_{\lambda}(x,y) = \sum_{\mu,\nu} c_{\mu,\nu}^{\lambda} s_{\mu}(x) s_{\nu}(y)$$

We have

$$c_{\mu,\nu}^{\lambda}=0$$
 unless  $d(\lambda)=d(\mu)+d(\nu)$  and  $\mu,\nu\subseteq\lambda$ 

We have also, if  $s_{\lambda}(x,y)$  is the symmetric function  $s_{\lambda}$  in the variables  $x_1, x_2, \ldots, y_1, y_2, \ldots$ 

$$s_{\lambda}(x,y) = \sum_{\mu,\nu} c_{\mu,\nu}^{\lambda} s_{\mu}(x) s_{\nu}(y)$$

From this one can obtain the identity

$$\frac{1}{H(\lambda)} = \sum_{\mu,\nu} c_{\mu,\nu}^{\lambda} \cdot \frac{1}{2^{d(\mu)}H(\mu)} \cdot \frac{1}{2^{d(\nu)}H(\nu)}$$

As a consequence, there exist  $a_{\sigma\tau} > 0$  such that, for any  $\pi \in \mathcal{D}_n$ ,

$$\sum_{\sigma,\tau} a_{\sigma\tau} c_{\sigma,\tau}^{\pi} = \sum_{\sigma,\tau} a_{\sigma\tau} t_{\sigma,\tau}^{\pi} \qquad (E)$$

in which  $\sigma, \tau$  run through words such that  $d(\sigma) + d(\tau) = d(\pi)$ .

As a consequence, there exist  $a_{\sigma\tau} > 0$  such that, for any  $\pi \in \mathcal{D}_n$ ,

$$\sum_{\sigma,\tau} a_{\sigma\tau} c_{\sigma,\tau}^{\pi} = \sum_{\sigma,\tau} a_{\sigma\tau} t_{\sigma,\tau}^{\pi} \qquad (E)$$

in which  $\sigma, \tau$  run through words such that  $d(\sigma) + d(\tau) = d(\pi)$ .

#### Theorem [N. '09]

For all words  $\pi, \sigma, \tau \in \mathcal{D}_n$  verifying  $d(\sigma) + d(\tau) = d(\pi)$   $t_{\sigma,\tau}^\pi = c_{\sigma,\tau}^\pi$ 

As a consequence, there exist  $a_{\sigma\tau} > 0$  such that, for any  $\pi \in \mathcal{D}_n$ ,

$$\sum_{\sigma,\tau} a_{\sigma\tau} c_{\sigma,\tau}^{\pi} = \sum_{\sigma,\tau} a_{\sigma\tau} t_{\sigma,\tau}^{\pi} \qquad (E)$$

in which  $\sigma, \tau$  run through words such that  $d(\sigma) + d(\tau) = d(\pi)$ .

#### Theorem [N. '09]

For all words  $\pi,\sigma,\tau\in\mathcal{D}_n$  verifying  $d(\sigma)+d(\tau)=d(\pi)$   $t^\pi_{\sigma,\tau}=c^\pi_{\sigma,\tau}$ 

Thanks to equation (E), we need only prove that

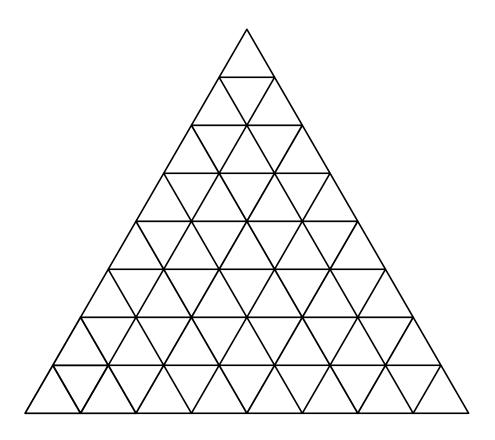
$$c_{\sigma,\tau}^{\pi} \le t_{\sigma,\tau}^{\pi}$$

for such extremal  $\sigma, \tau, \pi$ .

There are many objects that are counted by LR-coefficients. We use here Knutson-Tao puzzles.

There are many objects that are counted by LR-coefficients. We use here Knutson-Tao puzzles.

Consider a triangle of size 2n on the triangular lattice.

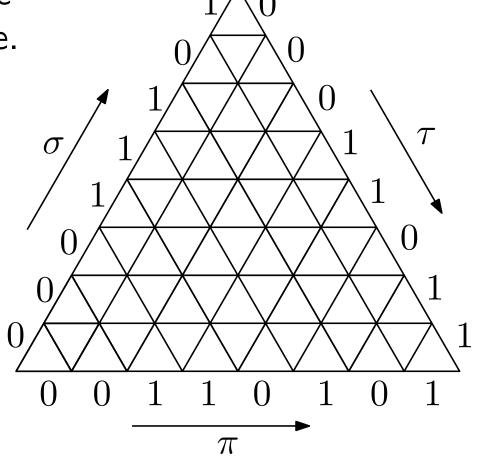


There are many objects that are counted by LR-coefficients. We use here Knutson-Tao puzzles.

Consider a triangle of size 2n on the triangular lattice.

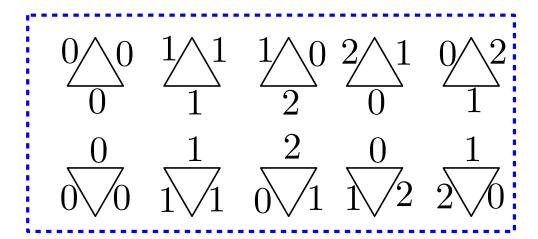
Fix  $\sigma, \pi, \tau \in \mathcal{D}_n$ , and label the boundary edges of the triangle.

$$\sigma = 00011011$$
 $\tau = 00011011$ 
 $\pi = 00110101$ 



A Knutson-Tao puzzle with boundary data  $\sigma, \pi, \tau$  is a labeling of each edge of the triangle by 0, 1 or 2, such that :

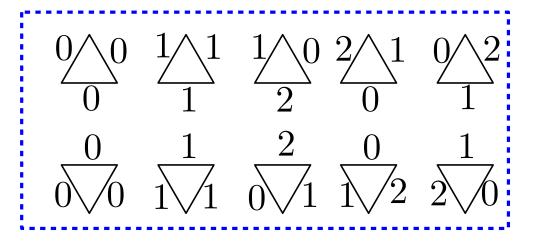
- ullet the labels on the boundary are given by  $\sigma, \pi, \tau$ ;
- on each unit triangle, the induced labeling must be among :



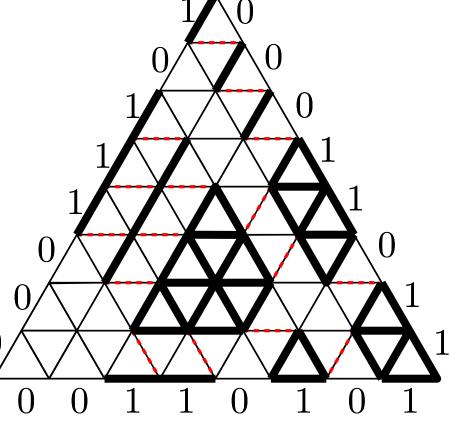
"Only 0s, only 1s, or 0, 1, 2 counterclockwise"

A Knutson-Tao puzzle with boundary data  $\sigma, \pi, \tau$  is a labeling of each edge of the triangle by 0, 1 or 2, such that :

- ullet the labels on the boundary are given by  $\sigma, \pi, \tau$ ;
- on each unit triangle, the induced labeling must be among :



label 0label 1label 2



Theorem [Knutson, Tao '03][K., T. and Woodward '03]

Let  $\sigma, \tau, \pi \in \mathcal{D}_n$ . Then the number of KT-puzzles with boundary data  $\sigma, \pi, \tau$  is equal to the LR coefficient  $c_{\sigma,\tau}^{\pi}$ .

Theorem [Knutson, Tao '03][K., T. and Woodward '03]

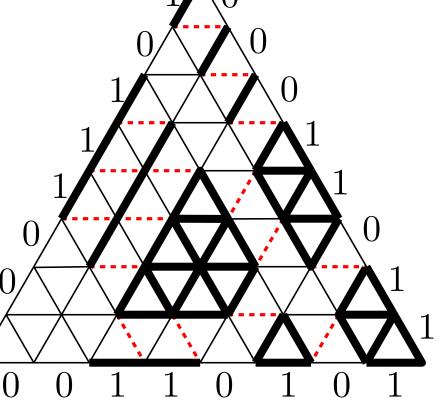
Let  $\sigma, \tau, \pi \in \mathcal{D}_n$ . Then the number of KT-puzzles with boundary data  $\sigma, \pi, \tau$  is equal to the LR coefficient  $c_{\sigma,\tau}^{\pi}$ .

$$\lambda = \square$$

$$\mu = \square$$

$$\nu = \square$$

Then  $c_{\mu,\nu}^{\lambda}=1$  because there is a unique puzzle in this case.



We fix  $\sigma, \pi, \tau \in \mathcal{D}_n$ , such that  $d(\sigma) + d(\tau) = d(\pi)$ . We will define a map  $\Phi$ .

KT puzzles with boundary data  $\sigma, \pi, \tau$ 

Φ

TFPL configurations with boundaries  $\sigma, \pi, \tau$ 

We fix  $\sigma, \pi, \tau \in \mathcal{D}_n$ , such that  $d(\sigma) + d(\tau) = d(\pi)$ . We will define a map  $\Phi$ .

KT puzzles with boundary data  $\sigma, \pi, \tau$ 

Φ

TFPL configurations with boundaries  $\sigma, \pi, \tau$ 

The map is local: it changes every small labeled triangle of a puzzle to a portion of a path in a TFPL configuration.

We fix  $\sigma, \pi, \tau \in \mathcal{D}_n$ , such that  $d(\sigma) + d(\tau) = d(\pi)$ . We will define a map  $\Phi$ .

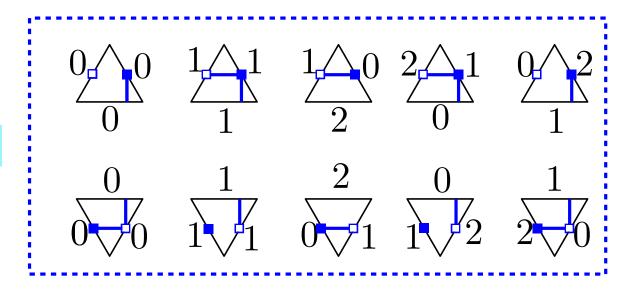
KT puzzles with boundary data  $\sigma, \pi, \tau$ 

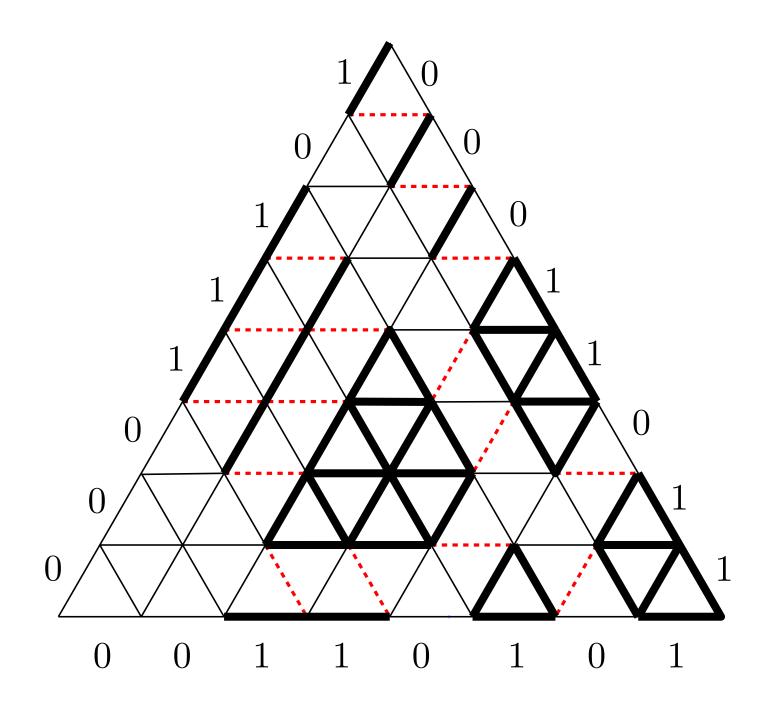
Φ

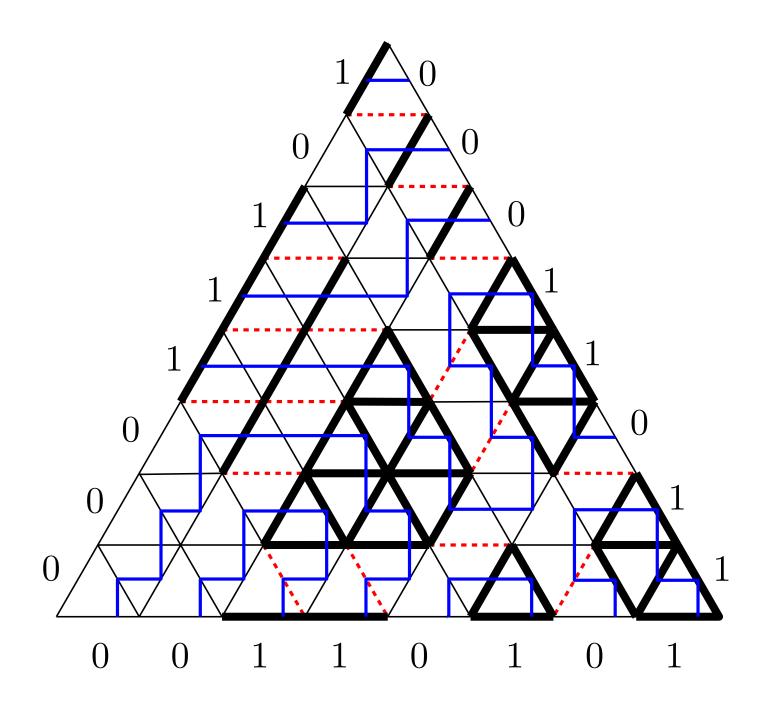
TFPL configurations with boundaries  $\sigma, \pi, \tau$ 

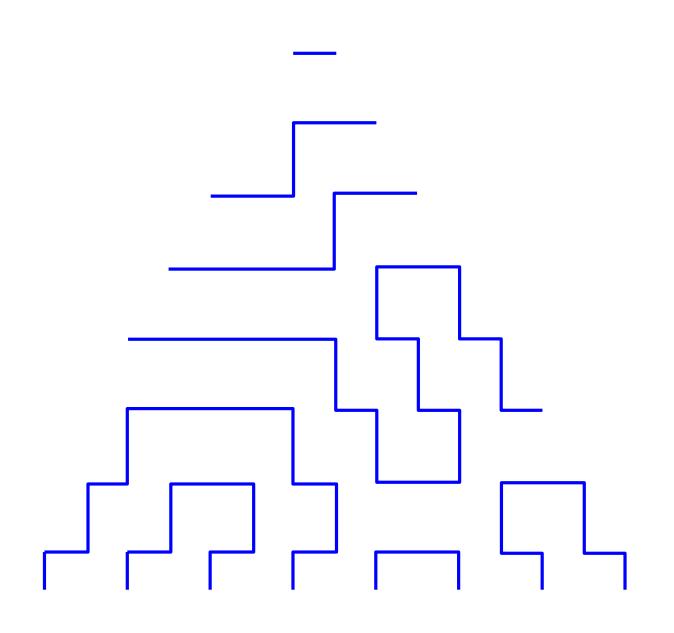
The map is local: it changes every small labeled triangle of a puzzle to a portion of a path in a TFPL configuration.

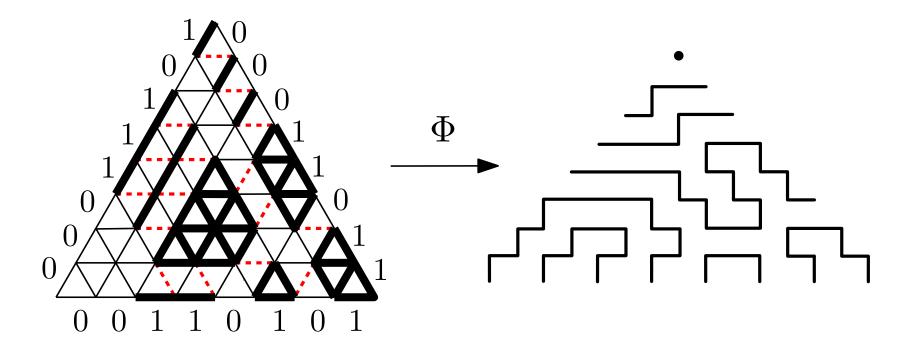
Definition of  $\Phi$ 

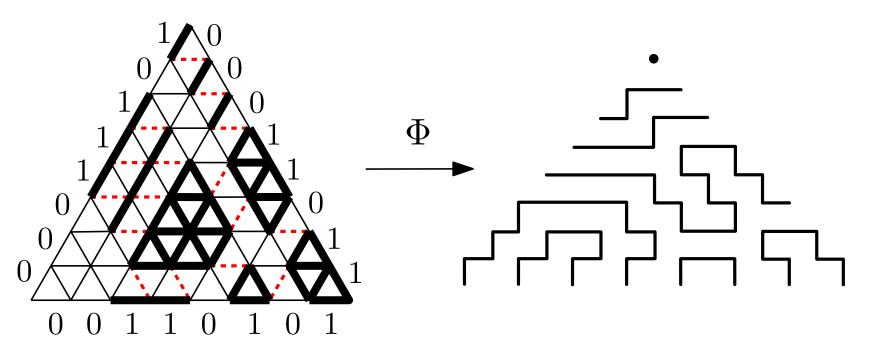












If P is a KT-puzzle with boundaries  $\sigma, \tau, \pi$  one must show :

#### 1. $\Phi$ is well defined:

- (a) the vertices of  $\Phi(P)$  are of degree 2 ,
- (b)  $\Phi(P)$  verifies the boundary conditions  $\sigma, \tau$ .
- (c) the connectivity of external edges given by  $\pi$  is respected.
- 2.  $\Phi$  is injective.

## Further questions

1) To compute  $A_X$ , one needs all  $t^\pi_{\sigma,\tau}$  beyond the case  $d(\pi) = d(\sigma) + d(\tau)$ . So the question is : What is the general value/interpretation of  $t^\pi_{\sigma,\tau}$ ? (Work in progress with I. Fischer, Uni Wien).

## Further questions

- 1) To compute  $A_X$ , one needs all  $t^\pi_{\sigma,\tau}$  beyond the case  $d(\pi) = d(\sigma) + d(\tau)$ . So the question is : What is the general value/interpretation of  $t^\pi_{\sigma,\tau}$ ? (Work in progress with I. Fischer, Uni Wien).
- 2) (Based on [Thapper '07]) The polynomials  $A_{\pi \cup m}$  verify linear recurrences

$$A_{\pi \cup m} = \sum_{\alpha \le \pi} c_{\alpha \pi} \cdot A_{\alpha \cup (m-1)}, \quad [N '09]$$

where  $c_{\alpha\pi}$  are integers defined in terms of the  $t_{\sigma \mathbf{0}_n}^{\pi}$ 's . Find a nice description of the  $c_{\alpha\pi}$ 's.

## Further questions

- 1) To compute  $A_X$ , one needs all  $t^\pi_{\sigma,\tau}$  beyond the case  $d(\pi) = d(\sigma) + d(\tau)$ . So the question is : What is the general value/interpretation of  $t^\pi_{\sigma,\tau}$ ? (Work in progress with I. Fischer, Uni Wien).
- 2) (Based on [Thapper '07]) The polynomials  $A_{\pi \cup m}$  verify linear recurrences

$$A_{\pi \cup m} = \sum_{\alpha \le \pi} c_{\alpha \pi} \cdot A_{\alpha \cup (m-1)}, \quad [N '09]$$

where  $c_{\alpha\pi}$  are integers defined in terms of the  $t_{\sigma \mathbf{0}_n}^{\pi}$ 's . Find a nice description of the  $c_{\alpha\pi}$ 's.

3) Related work (with T. Fonseca) : results + conjectures about the polynomials  $A_{\pi \cup m}$ , pointing to a combinatorial reciprocity phenomenon.