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A caution and a request

Some of my recent work is fairly combinatorial:

I used möbius inversion and factorizations in incidence algebras
to push curvature around in high dimenisional cell complexes
(§11 in “Constructing nonpositively curved spaces and groups”
LMS LNS)

I established multivariable polynomial identities by summing over
the poset of hypertrees and used formal power series and expo-
nential generating functions to do cohomology calculations for
the group of loops. (a series of papers with J.Meier et al.)

Caution: this talk is not as combinatorial. In particular I ask
noncombinatorial questions of combinatorial objects.
Request: indulgence.
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Main goal and a challenge problem

My main goal is to explain how I view combinatorial objects
through a metric lens. Let’s start with a challenge problem.
Solutions at the end of the talk.

Let Γ be an n-vertex planar graph in which all but one vertex has
degree 5 and every bounded region is a triangle. Let k be the
degree of the exceptional vertex and let the unbounded region
be an `-gon.

1. What are the possible values for n?
2. What are the possible values for k?
3. What are the possible values for `?
4. What is the relationship between n, k, and `?
5. Classify all such graphs.
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Outline

I. Geometric group theory
II. Posets and groups
III. Orthoschemes and complexes

Ten years ago Tom Brady showed me a new classifying space
for the braid groups and I suggested a nice piecewise Euclidean
metric. We conjectured that the result has good curvature prop-
erties and this launched a series of papers with a computational
focus.

After a quick primer on geometric group theory, I’ll explain the
space, the metric and the associated posets. Along the way
I’ll suggest a metric to use on order complexes and highlight
a combinatorially defined poset substructure that is interesting
from a metric viewpoint.
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I. Geometric group theory

Topology

Geometric Group
Theory

Differential
Geometry

Logic

Computer
Science

Combinatorics

Geometric group theory is built around two key ideas:

• Finitely generated groups have intrinsic metrics.

• Groups with “non-positively curved” metrics are well-behaved.
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The Big Bang: Gromov hyperbolic groups

A metric space is δ-hyperbolic when every geodesic triangle is

δ-thin (as in the hyperbolic plane).

A finitely generated group has a metric determined by calculating

distances in its Cayley graph. Gromov highlighted that although

the metric changes when the generating set changes, they are

roughly equivalent (quasi-isometric).

A f.g. group is (Gromov) hyperbolic when its intrinsic metric in

δ-hyperbolic for some δ ≥ 0.

Thm(Gromov 85): A f.g. group is hyperbolic iff its word prob-

lem can be solved in linear time.
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Good, True and Beautiful

In the same way that Socrates hints that the good, the true

and the beautiful are classes that (roughly) coincide, geometric

group theorists tend to (roughly) believe the following:

Metatheorem: Good geometry and topology = good algebra

and combinatorics = good algorithms and computational prop-

erties.

For example, the groups with well-behaved intrinsic geometry are

those in which efficient algorithms are possible and vice versa.

Despite its flaws, this has been an enormously fruitful initial

intuition.
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PE complexes and PS complexes

Def: Roughly speaking a piecewise Euclidean complex K is a

quotient of a disjoint union of Euclidean polytopes by isometric

face identification and a piecewise spherical complex is similarly

defined using spherical polytopes.

Def: The link of a vertex in a Euclidean polytope is the collection

of unit vectors that point into the polytope. The link of a vertex

in a PE complex is the natural PS complex obtained by gluing

together the vertex links in each of the individual polytopes.

Faces also have links defined using unit vectors orthogonal to

their affine hulls.

Rem: Every PS complex is the link of a vertex in a PE complex.
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Non-positive curvature

Non-positive curvature is usually defined using comparison trian-
gles but in a PE complex the definition can be rewritten in terms
of short geodesic loops.

Def: A geodesic path is an isometric embedding of an metric
interval. A geodesic loop is an isometric embedding of a metric
circle. A path / loop is locally geodesic if every point belongs
to an open subinterval which is geodesic. A local geodesic loop
is short when it has length less than 2π.

Ex: [Equitorial examples in S2]

Def/Thm: A PE complex is non-positively curved when the link
of every face is a PS complex with no short local geodesic loops.
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Cube complexes

Let K be a PE complex built out of cubes. Gromov provided a

very simple test to determine whether or not it is NPC.

Gromov’s Link condition: A cube complex is NPC iff the link

of each vertex is a flag simplicial complex.

Recall that a simplicial complex is flag if every complete subgraph

is the 1-skeleton of a simplex (= every non-simplex contains a

non-edge).

Because this is easy to test, cube complexes have been used

extensively in geometric group theory. Testing complexes built

out of other shapes is hard but sometimes doable [Elder-M].
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Charney-Davis conjecture

The Charney-Davis conjecture states that for every flag triangu-
lation of an odd dimensional sphere, a linear inequality involving
the face numbers should hold. Its origin is a conjecture about
euler characteristics of NPC manifolds.

Surfaces are nonpositively curved iff their euler characteristic is
nonpositive and χ(X × Y ) = χ(X) × χ(Y ), so NPC manifolds in
dimension 2n should have χ(M)(−1)n ≥ 0 (Hopf,Chern).

Charney and Davis noted that NPC cubings of manifolds have
flag triangulations of spheres as their vertex links and the euler
characteristics of NPC cube complexes can be found by summing
a curvature contribution from each vertex written as a linear
combination of the face numbers of its link.
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II. Posets and groups

Def: In any metric space we say that z is between x and y when

d(x, z) + d(z, y) = d(x, y). The collection of all points between x

and y is the interval [x, y]. Intervals are bounded partially ordered

sets with an ordering z ≤ w iff d(x, z)+d(z, w)+d(w, y) = d(x, y).
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Groups ⇒ Intervals

The natural measure of length in a directed graph Γ is the length
of the shortest directed combinatorial path from x to y. We use
this natural (partial asymmetric) metric to define intervals in
Cayley graphs using the same equations.

Since posets can be recovered from their Hasse diagrams, let
[g, h] denote the edge-labeled directed graph inside the Cayley
graph that is the union of shortest directed paths from vg to vh.
It is also the Hasse diagram of the poset order on [g, h].

Rem: Because Cayley graphs are homogeneous, the interval
[g, h] is isomorphic (as an edge-labeled directed graph) to the
interval [1, g−1h]. Thus it is sufficient to consider intervals of
the form [1, g].
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Example 1

If G is the symmetric group, S is the set of adjacent transposi-
tions and g is the “half-flip” permutation, then the interval [1, g]
is the 1-skeleton of the permutahedron with a Morse function.

PSfrag replacements

1
a bc

ab

aba

Question: What other bounded graded posets arise as intervals
inside “nice” (finite) groups with reasonable generating sets?

14



Example 2

If G is the symmetric group, S is the set of all transpositions,

and g is an n-cycle, then the interval [1, g] is the non-crossing

partition lattice NCn.

PSfrag replacements

1
a b

c

ab

1 2

34
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Intervals ⇒ Groups

Let [1, g] be an interval in the Cayley graph of an S-generated

group G. We construct a new group Gg as the largest group

generated by S containing [1, g] as part of its own Cayley graph.

In other words, Gg is defined by only adding those relations that

are visible inside the interval [1, g].

Def: Let R be the words corresponding to the directed geodesic

paths from v1 to vg in the Cay(G,S), i.e. R is the set of minimal

length positive factorizations of g over S. It is an easy exercise

to show that 〈S | u = v, for all u, v ∈ R〉 is a presentation for Gg.

We say Gg is an interval group obtained by pulling G apart at g.
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Examples

Ex 1: If G = Sym3, S = {a = (1,2), b = (2,3)} and g = (1,3),

then R = {aba, bab} and

Gg = 〈a, b | aba = bab〉 ∼= Braid3.

Ex 2: If G = Sym3, S = {a = (1,2), b = (2,3), c = (1,3)} and g

is (1,2,3), then R = {ab, bc, ca} and

Gg = 〈a, b, c | ab = bc = ca〉 ∼= Braid3.
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Example 1 generalized

PSfrag replacements

1
a bc

ab

aba

When W is a finite Coxeter group, S is a standard Coxeter gen-
erating set, and g is the “longest element” in W , then Wg is the
corresponding Artin group of finite type. The intervals are the
1-skeleton of the W -permutahedron.
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Example 2 generalized

PSfrag replacements

1
a b

c

ab

When W is a finite Coxeter group, S is the set of all reflections,
and g is a Coxeter element, then Wg is the corresponding Artin
group. The intervals are the generalized noncrossing partition
lattices NCW [Bessis, Brady-Watt].
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Intervals ⇒ Complexes

There is a natural complex Kg constructed as a quotient of the

order complex of the poset P = [1, g].

The edges in the geometric realization of P have orientations

from the poset order and G-labels from the fact that P is a

portion of the Cayley graph of G with respect to S.

The quotient we want is the one in which simplices are identified

whenever we can do so respecting edge orientations and edge

labels.

The result is a one-vertex complex Kg with π1(Kg) = Gg.
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Tom’s complex

Tom’s complex for the braid groups is the complex Kg that re-

sults from Example 2. The group G is the symmetric group

generated by all transpositions and we pull it apart at an n-cycle

g. The interval [1, g], as mentioned earlier, is the lattice of non-

crossing partitions NCn. Because [1, g] is a “balanced” lattice,

Kg is a classifying space for the braid groups Braidn [Brady].

1 2

34
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III. Orthoschemes and complexes

Def: An orthoscheme O(v0, v1, . . . , vn) is the convex hull of a
piecewise linear path that proceeds along mutually orthogonal
directions ui = vi − vi−1.

v0 v1

v2

v3

Coxeter was interested in orthoschemes because they arise when
regular polytopes are metrically barycentrically subdivided.
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Unit orthoschemes

Def: A unit orthoscheme is one where the vectors ui are or-

thonormal. These metric simplices arise in the barycentric sub-

division of the n-cube of side length 2.
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Orthoscheme complexes

Def: If every maximal chain from the bottom to the top of a

bounded poset has the same length, then this common number

is called its rank. If every interval has a rank then P is graded.

Def: The order complex of a graded poset can be turned into

a piecewise Euclidean complex by turning each simplex into an

orthoscheme. In particular, we make the edge corresponding to

x < y an edge of length
√
k where k is the rank of the poset

interval P (x, y). The result is the orthoscheme complex |P |.

Rem: Poset products lead to orthoscheme complexes that are

metric products: |P ×Q| = |P | × |Q|.
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Example: Boolean lattices

Def: A rank n boolean lattice is poset of subsets of [n] under
inclusion.

∅

a b c

ab ac bc

abc

∅

a b
c

ab
ac

bc

abc

The orthoscheme complex of a rank n boolean lattice is a sub-
divided n-cube. This is a consequence of poset products leading
to metric products.

25



Example: Cube complexes

Every regular cell complex has a face poset and every poset has

an order complex. These operations are almost inverses of each

other in that the order complex of the face poset of a regular

cell complex is homeomorphic to the original complex but it has

the cell structure of its barycentric subdivision.

Observation: If X is a cube complex where the cubes have

side length 2, then the orthoscheme complex of its face poset is

isometric to the original complex but with the cell structure of

its barycentric subdivision. Since we know which cube complexes

are NPC, we can reformulate these conditions as conditions on

their face posets.
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Endpoints and diagonals

The vertices v0 and vn are the endpoints of the orthoscheme
O(v0, . . . , vn) and the edge connecting them is its diagonal.

The link of the endpoint of the unit n-orthoscheme is a Coxeter
simplex of type Bn. The link of its diagonal is a Coxeter simplex
of type An−1.
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Example: Linear subspace posets

Def: Let Ln(F) be the poset of linear subspaces of the vector
space Fn under inclusion.

Chains in Ln(F) are flags, the diagonal link of the orthoscheme
complex of Ln(F) is a spherical building of type An−1 and the
orthoscheme metric is the one that produces the correct metric
on this diagonal link. The poset L3(F2) and its diagonal link are
shown.
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Posets and curvature

Question: Which bounded graded posets have NPC orthoscheme

complexes?

I know some aspects of the answer.

First, this collection of posets is closed under taking intervals.

Next, for a fixed rank n, the entire collection is defined by the

exclusion of a finite list of configurations. Finally, this list is

computable in theory but not (yet) in practice - except for very

small ranks.

The hope is that the eventual list is relatively easy to describe

as in Gromov’s link condition.
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Links and joins

The orthogonality embedded in the definition of an orthoscheme
means that the links of its faces decompose into spherical joins.

Def: If K and L are spherical polytopes that are vertex links
of Euclidean polytopes P and Q then the spherical join K ∗ L is
defined to be the corresponding vertex link in P ×Q.

Rem: The link of a vertex in an unit orthoscheme is a spherical
join of two endpoint links of unit suborthoschemes. The link of
an edge in a unit orthoscheme is a spherical join of two endpoint
links and a diagonal link of unit suborthoschemes.

Lem: The links of simplices in a unit orthoscheme are spherical
joins of spherical polytopes of type A and B.
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Links and curvature

Lem: The link of a simplex in an orthoscheme complex of a
bounded graded poset P is a spherical join of endpoint and di-
agonal links of the orthoscheme complexes of subintervals of P

Lem: Spherical joins contains short geodesic loops iff one factor
contains a short geodesic loop and endpoint links never contain
short geodesic loops.

Thm(Brady-M) The orthoscheme complex of a bounded graded
poset is NPC iff its local diagonal links have no short geodesic
loops.

In other words, it fails to be NPC iff it contains an interval whose
diagonal link contains a short geodesic loop.
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Diagonal Links

The diagonal link of an orthoscheme complex is the order com-
plex of P \ {0,1} (its bounding elements) with a PS metric of
type A.

The vertices of the diagonal link corresponds to the elements of
P \ {0,1}. The edges of the diagonal link indicate compatibility:
there is one edge for each x < y.

Let i + j + k = n where n is the rank of P . The metric on a
maximal chain in the diagonal link of P is a spherical simplex
where the edge connecting the vertex of rank i with the vertex
of corank k has length θ where

cos(θ) =
√

i
i+j ·

k
j+k.
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Spindles and local geodesics

Lem: Every locally geodesic path that remains in the 1-skeleton

of the diagonal link of |P | is described by a spindle in P .

Three types of loops and their relations.


Local geodesics

in a local
diagonal link

 ⊃


Local geodesics
that remain in
its 1-skeleton

 ⊂


Loops that
correspond
to spindles
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Spindles

Def: Two elements in a bounded poset are complements if they
have no nontrivial upper or lower bounds. A spindle is a zig-zag
path in a poset where xi−1 and xi+1 are complements in the
subinterval [0, xi] or [xi,1]. The length of a spindle is the sum
of its edge lengths and it is short if it has length less than 2π.
Here are two views of a spindle of girth 14.

Question: Have spindles already arisen in combinatorics under
another name?
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Poset curvature conjecture

Conjecture: The orthoscheme complex of a bounded graded

poset is NPC iff it has no short spindles.

Thm(T.Brady-M): True for posets of rank at most 4.

The proof uses earlier work with Murray Elder. After several

reductions the only short spindles in rank 4 are those shown:

0

1

2

3

4

0

1

2

3

4
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4-generator Coxeter groups and Artin groups

As a result Tom’s complex for Braid5 is nonpositively curved
under the orthoscheme metric.

Thm: The noncrossing partition lattices of type A4 and B4
contain no short spindles. As a consequence their orthoscheme
complexes are NPC and the A4 and B4 Artin groups have good
curvature properties. The noncrossing partition lattices of type
D4, F4 and H4 do contain short spindles.

In fact, Woonjung Choi showed in her dissertation that the
D4, F4 and H4 complexes do not support any NPC PE metric.
The D4, F4 and H4 examples as illustrations of the converse of
the good-true-beautiful metatheorem. As Coxeter theorists well
know, type D and the exceptional types are often harder to deal
with than type A and type B.
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Lattices

Lem: Every spindle of girth 4 is short and a bounded graded

poset contains a girth 4 spindle iff it is not a lattice.

0

1

a c

b d

Rem: In boolean lattices complements are unique and every

spindle has girth 6 and length 2π. Thus boolean lattices have

no short spindles.
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Modular lattices

i

i

i

j

j

k

k

0

x1

x2

x3

x4

1

Prop: If P is a modular lattice then P has no short spindles.

Conj: If P is a modular lattice then its orthoscheme complex |P |
is NPC.
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Partitions and Buildings

One reason for believing that Tom’s complex is NPC in general

(i.e. the orthoscheme complex for NCn is NPC) is that for every

n and for every field F we have the following inclusions:

NCn ⊂ Πn ⊂ Ln(F)

The middle poset is the full partition lattice and for the second

inclusion we use the blocks to indicate which coordinates must be

equal. The diagonal link of Ln(F) is a spherical building. Because

every chain in NCn and Πn is part of a Boolean lattice subposet,

their diagonal links can be viewed as unions of apartments from

this building and which apartments can be explicitly described.
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Apartments in NCn

Rem: The subposets of NCn that correspond to apartments in

its diagonal link are indexed by noncrossing planar trees.

Consider a boolean subposet of NCn. To find the corresponding

tree note that the rank 1 elements correspond to edges in the

n-gon. Because their join is rank 2, the edges do not cross.

Because of the heights of the other joins, there can be no cycles

among the edges and their union must be a tree.

The boolean subposet come from selecting a subset of the edges

and taking convex hulls of the connected components.
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IV. Buildings and continuous braids

Suppose we consider continuous groups as GGT objects

The Lie group O(2,R) as a space is the union of two circles.

The reflections are shown on the right, the rotations are on the

left and the identity is marked. We use the reflections as our

generating set and the colors are used to distinguish them. What

does its Cayley graph look like?
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Cayley graph of O(2,R)

The Cayley graph of O(2,R) with respect to the set R of all
reflections has:

• Vertices correspond to S1 ∪ S1 with the discrete topology.

• Edges create a complete bipartite graph: there is a unique
edge (with a unique color) connecting each vertex on one circle
is to each vertex on the other circle.

The Cayley graph thus looks like S1 ∗ S1 ∼= S3 but with a strange
metric turning it into a simplicial graph.

The orthogonal groups can be viewed as continuous Coxeter
groups. What I’m defining is the continuous Artin group analog.
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The Longitude Metric on S2

This is a simplicial graph, its fundamental group is free and it

has a very pretty universal cover.
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Its universal cover

Call this circle-branching simplicial tree TS1.
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Pulling apart O(2,R)

Apply the pulling apart construction where G = O(2,R), S is
the set of all reflections, and g is a non-trivial rotation. Its
factorization poset P and a portion of K̃ are shown below.

P = ⊂ K̃
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Structure of pulled apart O(2,R)

Prop: When G = O(2,R) is pulled apart at a rotation g, the
complex K̃ is a metric product TS1 × R.

 × R

The group structure depends on the choice of g. When the rota-
tion is rational, Gg has a non-trivial center. When it is irrational,
Gg is centerless.
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Factorizations in O(n,R)

Thm(T.Brady-Watt): If g is fixed-point free isometry of Sn−1

then its poset P of minimal length factorizations is isomorphic
to the linear subspace poset Ln(R). Moreover, the isomorphism
is defined by sending h ∈ P to the orthogonal complement of its
fixed subspace.

Notice that the poset structure is independent of g. What
changes is the way edges in P are labeled by elements of O(n,R).
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Structure of pulled apart O(n,R)

Thm (M): For every fixed-point free isometry g in O(n,R), the

group Gg obtained by pulling G = O(n,R) apart at g (with re-

spect to all reflections) has a finite-dimensional classifying space

whose universal cover is isometric to an Ãn−1-building cross the

reals (hence CAT(0)). In addition, it has a continuous Garside

structure and thus the word problem is “decidable”.

The proof is essentially an application of traditional Garside con-

structions to the orthogonal groups, plus the factorization struc-

ture found by Brady and Watt. I call this pulled apart orthogonal

group the group of continuous braids.
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V. Newton’s 13 spheres

The 13 sphere theorem (conjectured by Newton in conversation
with David Gregory) says that 13 unit spheres cannot simulta-
neously touch a common unit sphere. John Leech gave a 2 page
proof of this theorem in 1956. Leech reduces it to the problem
of excluding a 13 vertex graph with all but one vertex degree 5
and the final vertex degree 4 and all but one region triangular
with the final region a square. He then states

Despite the consistency of these numbers, there is in fact
no polyhedron which has them. I know of no better proof
of this than sheer trial.

Using orbifolds, one can prove this without trial and error and
also solve the more general challenge problem.
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Spherical orbifolds

A topological disc with a local unit sphere metric has an es-

sentially unique local isometry to S2. The proof is like analytic

continuation.

Thm: Let X be a metric space that is topologically a 2-sphere

that locally has a unit sphere metric everywhere except at 2

points (called cone points).

1. the amount of angle at both cone points is the same

2. the distance between the cone points is at most π

3. if less than π then the cone angle is 2πk for k ∈ Z.

Proof: Cut open along a geodesic and map to S2.
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Challenge problem

Let Γ be an n-vertex planar graph in which all but one vertex has
degree 5 and every bounded region is a triangle. Let k be the
degree of the exceptional vertex and let the unbounded region
be an `-gon.

1. What are the possible values for n? n = 12m
2. What are the possible values for k? k = 5m
3. What are the possible values for `? ` = 3m
4. What is the relationship between n, k and `? Same m!
5. Classify all such graphs.

There are exactly 4 such graphs for each m > 1 and each is
a branched cover of the icosahedron 1-skeleton. The 4 comes
from the number of ways of selecting a vertex and a face of the
icosahedron up to isomorphism.
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Thank You!
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