Diagonal ideal of $(\mathbb{C}^2)^n$ and q, t-Catalan numbers

Kyungyong Lee † and Li Li ‡

FPSAC 2010

[†] Department of Mathematics, Purdue University [‡] Department of Mathematics, University of Illinois at Urbana-Champaign

Detail is available in arXiv 0901.1176 and arXiv 0909.1612.

Let I_n be the (big) diagonal ideal of $(\mathbb{C}^2)^n$. Haiman proved that the q, t-Catalan number is the Hilbert series of a graded vector space $M_n = \bigoplus_{d_1,d_2} (M_n)_{d_1,d_2}$ spanned by a minimal set of generators for I_n . We give simple upper bounds on dim $(M_n)_{d_1,d_2}$ in terms of partition numbers, and find all bi-degrees (d_1, d_2) such that dim $(M_n)_{d_1,d_2}$ achieve the upper bounds. For such bi-degrees, we also find explicit bases for $(M_n)_{d_1,d_2}$.

q, t-Catalan numbers

The q, t-Catalan number $C_n(q, t)$ can be defined using Dyck paths: Take the $n \times n$ square whose southwest corner is (0,0) and northeast corner is (n, n). Let \mathcal{D}_n be the collection of Dyck paths, i.e. lattice paths from (0,0) to (n, n) that proceed by NORTH or EAST steps and never go below the diagonal. For any Dyck path Π , let $a_i(\Pi)$ be the number of squares in the *i*-th row that lie in the region bounded by Π and the diagonal. A.M.Garsia and J.Haglund showed that

$$\mathcal{C}_n(q,t) = \sum_{\Pi \in \mathcal{D}_n} q^{\operatorname{area}(\Pi)} t^{\operatorname{dinv}(\Pi)},$$

where

$$\begin{aligned} & \operatorname{area}(\Pi) = \sum a_i(\Pi), \\ & \operatorname{dinv}(\Pi) := |\{(i,j) \mid i < j \text{ and } a_i(\Pi) = a_j(\Pi)\}| \\ & + |\{(i,j) \mid i < j \text{ and } a_i(\Pi) + 1 = a_j(\Pi)\}|. \end{aligned}$$

q, t-Catalan numbers: an example

In the above example, the blue curve is a Dyck path Π ,

area
$$(\Pi) = 0 + 1 + 0 + 1 + 2 = 4$$

dinv $(\Pi) = 2 + 5 = 7$.

So this path contributes a monomial q^4t^7 to the q, t-Catalan number $C_5(q, t)$.

A combinatorial characterization of q, t-Catalan numbers

Let $\mathfrak{D}_n^{catalan}$ be the set consisting of $D \subset \mathbb{N} \times \mathbb{N}$, where D contains n points satisfying the following conditions. (a) If $(p, 0) \in D$ then $(i, 0) \in D, \forall i \in [0, p]$. (b) For any $p \in \mathbb{N}$,

 $\#\{j \mid (p+1,j) \in D\} + \#\{j \mid (p,j) \in D\} \ge \max\{j \mid (p,j) \in D\} + 1.$

We found the following

Proposition

The coefficient of $q^{d_1}t^{d_2}$ in the q,t-Catalan number $C_n(q,t)$ is equal to

$$\#\{D \in \mathfrak{D}_n^{catalan} \mid \deg_x D = d_1, \deg_y D = d_2\},\$$

where $\deg_x D$ (resp. $\deg_y D$) is the sum of the first (resp. second) components of the n points in D.

Note: this proposition was discovered independently by A. Woo.

An example for the combinatorial characterization

The two conditions are easy to describe by picture:

(a) The bottom row has no holes.

(b) The number of holes in a column is not greater than the number of points in the next column.

In the two 9-tuples of points below, only the left one belongs to $\mathfrak{D}_{9}^{\textit{catalan}}.$

n-tuples of points and alternating polynomials

Let \mathfrak{D}_n be the set containing all the *n*-tuples

$$D = \{(\alpha_1, \beta_1), ..., (\alpha_n, \beta_n)\} \subset \mathbb{N} \times \mathbb{N}.$$

For any $D \in \mathfrak{D}_n$, define

$$\Delta(D) := \det \begin{bmatrix} x_1^{\alpha_1} y_1^{\beta_1} & x_1^{\alpha_2} y_1^{\beta_2} & \dots & x_1^{\alpha_n} y_1^{\beta_n} \\ \vdots & \vdots & \ddots & \vdots \\ x_n^{\alpha_1} y_n^{\beta_1} & x_n^{\alpha_2} y_n^{\beta_2} & \dots & x_n^{\alpha_n} y_n^{\beta_n} \end{bmatrix}$$

Because of alternating property of determinants with respect to rows, the polynomial $\Delta(D)$ are alternating polynomials, i.e. they satisfy the alternating condition:

$$\sigma(f) = \operatorname{sgn}(\sigma)f, \forall \sigma \in S_n.$$

It is easy to see that $\{\Delta(D)\}_{D \in \mathfrak{D}_n}$ forms a basis for the vector space of alternating polynomials.

Haiman proves that

$$\bigcap_{1 \le i < j \le n} (x_i - x_j, y_i - y_j) = \text{ideal generated by } \Delta(D)\text{'s.}$$

Call the above ideal the **diagonal ideal** and denote it by I_n . The number of minimal generators of I_n , which is the same as the dimension of the vector space $M_n = I_n/(\mathbf{x}, \mathbf{y})I_n$, is equal to the *n*-th Catalan number. The space M_n is doubly graded as $\bigoplus_{d_1,d_2} (M_n)_{d_1,d_2}$. The *q*, *t*-Catalan number can be equivalently defined as

$$C_n(q,t) = \sum_{d_1,d_2} \dim(M_n)_{d_1,d_2} q^{d_1} t^{d_2}.$$

Question

Given a bi-degree (d_1, d_2) , is there a combinatorially significant construction of the basis of $(M_n)_{d_1,d_2}$?

Using Haiman's theorem, the study of the above question is closely related to the study of q, t-Catalan numbers. The next theorem answers the question for certain bi-degrees.

Theorem

Let d_1, d_2 be non-negative integers d_1, d_2 with $d_1 + d_2 \leq \binom{n}{2}$. Define $k = \binom{n}{2} - d_1 - d_2$ and $\delta = \min(d_1, d_2)$. Then the coefficient of $q^{d_1}t^{d_2}$ in $C_n(q, t)$, which is $\dim(M_n)_{d_1,d_2}$, is less than or equal to $p(\delta, k)$, and the equality holds if and only if one the following conditions holds:

•
$$k \le n - 3$$
, or

•
$$k=n-2$$
 and $\delta=1$, or

In case the equality holds, there is an explicit construction of a basis of $(M_n)_{d_1,d_2}$.

Step I of the proof: asymptotic behavior

Let $\overline{\Delta D}$ be the image of ΔD in M_n .

For *n* sufficiently large, we observed certain linear relations among $\overline{\Delta(D)}$ which are combinatorially simple and essential for the construction of a basis for $(M_n)_{d_1,d_2}$.

We define a map φ sending an alternating polynomial f into the polynomial ring

$$\mathbb{C}[\rho] := \mathbb{C}[\rho_1, \rho_2, \rho_3, \dots].$$

The map has two desirable properties: (i) for many f, $\varphi(f)$ can be easily computed, and (ii) for each bi-degree (d_1, d_2) , φ induces a morphism $\overline{\varphi} : (M_n)_{d_1, d_2} \to \mathbb{C}[\rho]$, and the linear dependency is easier to check in $\mathbb{C}[\rho]$ than in $(M_n)_{d_1, d_2}$. Then we explicitly construct *n*-tuples of points *D*'s, such that the image $\varphi(\Delta(D))$'s are linearly independent as polynomials in $\mathbb{C}[\rho]$.

- The study of the bi-graded module M_n provides new insight to the study of the q, t-Catalan numbers.
- The map φ naturally arises in the study of M_n, and may be useful in the study of the geometry of the Hilbert schemes of points.

Reference

N. Bergeron and Z. Chen, Basis of Diagonally Alternating Harmonic Polynomials for low degree, arXiv: 0905.0377.

A. M. Garsia and M. Haiman, A Remarkable q; t-Catalan sequence and q-Lagrange inversion, J. Algebraic Combin. 5 (1996), 191–244.

M. Haiman, Hilbert schemes, polygraphs and the Macdonald positivity conjecture, J. Amer. Math. Soc. 14 (2001), no. 4, 941–1006.

M. Haiman, Commutative algebra of *n* points in the plane, With an appendix by Ezra Miller. Math. Sci. Res. Inst. Publ., 51, Trends in commutative algebra, 153–180, Cambridge Univ. Press, Cambridge, 2004.