On extensions of the Newton-Raphson iterative scheme to arbitrary orders

Gilbert Labelle, LaCIM-UQAM, Montréal (Québec) Canada

FPSAC’10, San Francisco, August 2010
Definition
Let \(t_n \to a \). The convergence is said to be of order \(p \) if

\[
t_{n+1} - a = O \left(\left(t_n - a \right)^p \right), \text{ as } n \to \infty.
\]

Theorem (Classical Newton-Raphson)
Let \(U \subseteq \mathbb{R} \) be open and \(f : U \to \mathbb{R} \) be twice differentiable. If \(a \in U \) is a simple root of \(f \left(t \right) = 0 \), then the iterative scheme,

\[
t_{n+1} = N \left(t_n \right), \quad n = 0, 1, 2, ..., \quad \text{with} \quad N \left(t \right) = t - \frac{f \left(t \right)}{f' \left(t \right)}
\]

produces a quadratically convergent \((p = 2 \) sequence of approximations \(t_n \to a \), as \(n \to \infty \), whenever the first approximation, \(t_0 \), is sufficiently near to \(a \).
Higher order convergence can also be achieved:

Theorem (Householder, \(p = 3 \))

\[
\mathcal{N}(t) = t - \frac{f(t)}{f'(t)} \left(1 + \frac{f(t)f''(t)}{2f'(t)^2}\right).
\]

Theorem (Halley, \(p = 3 \))

\[
\mathcal{N}(t) = t - \frac{2f(t)f'(t)}{2f'(t)^2 - f(t)f''(t)}.
\]

Theorem (Householder, \(p = k + 1 \))

\[
\mathcal{N}(t) = t + k \frac{(1/f)^{(k-1)}(t)}{(1/f)^{(k)}(t)}.
\]
Theorem (Extension of Newton-Raphson to order $p = k + 1$)

Let f be of class C^{k+1} around the simple root a and let

$$
\mathcal{N}(t) = \sum_{\nu=0}^{k} (-1)^\nu \frac{f(t)^\nu}{\nu!} \left(\frac{1}{f'(t)D} \right)^\nu t.
$$

Then for every t_0 sufficiently near to a, the sequence $(t_n)_{n \geq 0}$, defined by $t_{n+1} = \mathcal{N}(t_n)$, converges to a to the order $k + 1$:

$$
t_{n+1} - a \sim C \cdot (t_n - a)^{k+1}, \quad n \to \infty,
$$

where

$$
C = (-1)^{k+1} \left[\frac{f'(t)^{k+1}}{(k+1)!} \left(\frac{1}{f'(t)D} \right)^{k+1} t \right]_{t=a}.
$$

Proof (Sketch).

$a = f^{-1}(0) = f^{-1}(f(t) - f(t)) = f^{-1}(f(t) + u)|_{u=-f(t)}$. \hfill \Box
The last iteration step can also be rewritten as,

\[\mathcal{N}(t) = \sum_{\nu=0}^{k} (-1)^\nu \left(\frac{f(t)}{f'(t)} D^\nu \right) t, \]

where \(\binom{z}{\nu} = \frac{z(z-1)(z-2)\cdots(z-\nu+1)}{\nu!}. \)

Corollary

Let \(f \) be analytic around the simple root \(a \). Then, for every \(g \), analytic around \(a \) and \(t \) sufficiently near to \(a \):

\[g(a) = \sum_{\nu=0}^{\infty} (-1)^\nu \frac{f(t)^\nu}{\nu!} \left(\frac{1}{f'(t)} D^\nu \right) g(t). \]

\[= \sum_{\nu=0}^{\infty} (-1)^\nu \left(\frac{f(t)}{f'(t)} D^\nu \right) g(t). \]
Typical illustrations (order = $k + 1$):

- **Root extraction**, $f(t) = t^n - c = 0$, $a = c^{1/n}$, $g(t) = t^{m/n}$:

 $$
 \mathcal{N}(t) = \sum_{\nu=0}^{k} (-1)^{\nu} \left(\frac{1}{n} \right)^{\nu} t \left(1 - \frac{c}{t^n} \right)^{\nu},
 $$

 $$
 c^{m/n} = \sum_{\nu=0}^{\infty} (-1)^{\nu} \left(\frac{m}{n} \right)^{\nu} t^{m} \left(1 - \frac{c}{t^n} \right)^{\nu}.
 $$

- **Computing logarithms**, $f(t) = e^t - c$, $a = \ln(c)$, g analytic:

 $$
 \mathcal{N}(t) = t - \sum_{\nu=1}^{k} \frac{(1 - ce^{-t})^{\nu}}{\nu},
 $$

 $$
 g(\ln(c)) = \sum_{\nu=0}^{\infty} (ce^{-t} - 1)^{\nu} \left(\frac{D}{\nu} \right) g(t).
 $$
Another illustration (order = $2p + 1$):

- Approximating π, $f(t) = \sin(t) = 0$, $a = \pi$, g analytic:

\[
\frac{3}{4}\pi < t_0 < \frac{5}{4}\pi, \quad t_{n+1} = N(t_n) \rightarrow \pi \quad \text{where}
\]

\[
N(t) = t - \tan(t) + \frac{\tan(t)^3}{3} - \frac{\tan(t)^5}{5} + \cdots + (-1)^{2p-1}\frac{\tan(t)^{2p-1}}{2p-1}.
\]

Moreover,

\[
g(\pi) = \sum_{\nu=0}^{\infty} (-1)^\nu \binom{\tan(t)D}{\nu} g(t), \quad \text{for } t \text{ near } \pi.
\]
Given a combinatorial species, \(R \), the species, \(A = A(X) \), of \(R \)-enriched rooted trees is recursively defined by

\[
A = XR(A).
\]

Figure: An \(R \)-enriched rooted tree \((X = \bullet)\)

Hence, \(A \) is the solution of \(F(T) = 0 \) where \(F(T) = T - XR(T) \).
Let $D = d/dT$ denote the combinatorial differentiation operator with respect to singletons of sort T. Note that

$$-F(T) = XR(T) - T \quad \text{and} \quad DF(T) = F'(T) = 1 - XR'(T).$$

This suggests that for some actions of the symmetric groups \mathfrak{S}_ν:

Theorem

Let $m \geq 0$. If α coincides with the species A of R-enriched rooted trees on sets up to cardinality m, then

$$N(\alpha) = \sum_{\nu=0}^{k} \frac{1}{\mathfrak{S}_\nu} (XR(\alpha) - \alpha)^\nu \left[\left(\frac{1}{1 - XR'(T)} D \right)^\nu T \right]_{T := \alpha},$$

coincides with A on sets up to cardinality $(k + 1)(m + 1)$.

In other words,

\[\alpha = A|_{\leq m} \Rightarrow \mathcal{N}(\alpha)|_{\leq (k+1)(m+1)} = A|_{\leq (k+1)(m+1)}. \]

Proof ($m = 6$ fixed).

- α-structures are called \textit{light R-enriched rooted trees}.
- ($XR(\alpha) - \alpha$)-structures are called \textit{m-broccolis}:

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{broccoli}
\caption{A m-broccoli for $m = 6$}
\end{figure}
\[\mathcal{D} = \frac{1}{1 - X R'(T)} D \] is called an \textit{eclosion operator} \((T = \blacktriangle) \):

![Diagram of eclosion operator applied to a species \(K(X, T) \)]

\textbf{Figure:} The eclosion operator \(\mathcal{D} \) applied to a species \(K(X, T) \)
Now let τ be an A-structure on a set of size $\leq (k + 1)(m + 1)$. Let ν be the number of broccolis contained in τ. Then $0 \leq \nu \leq k$. Number arbitrarily these broccolis from 1 to ν as in Figure (a), then detach these broccolis as in Figure (b), (here $m = 6$, $\nu = 3$):

(a) Numbering broccolis

(b) Detached broccolis

Figure: Visualizing $(XR(\alpha) - \alpha)^\nu \left[\left(\frac{1}{1-XR'(T)D} \right)^\nu T \right]_{T:=\alpha}$

We conclude using the fact that \mathcal{G}_ν acts on these structures.
Corollary

Let $A = XR(A)$ and G be an arbitrary species. Then, according to the number ν of leaves, the following expansions hold:

\[
A = \sum_{\nu=0}^{\infty} \frac{1}{\mathcal{S}_\nu} X^\nu \left[\left(\frac{R(0)}{1 - XR'(T)D} \right)^\nu T \right]_{T:=0},
\]

\[
G(A) = \sum_{\nu=0}^{\infty} \frac{1}{\mathcal{S}_\nu} X^\nu \left[\left(\frac{R(0)}{1 - XR'(T)D} \right)^\nu G(T) \right]_{T:=0}.
\]

Proof.

Take $m = 0$ and $\alpha = 0$. The 0-broccolis become $XR(0)$-structures (that is, enriched singletons, or leaves). Finally let $k \to \infty$. \qed
Corollary

Let \(R(x) = \sum_{n=0}^{\infty} r_n x^n / n! \) and \(G(x) = \sum_{n=0}^{\infty} g_n x^n / n! \). Let \(\gamma_{n,\nu} \) be the number of \(G \)-assemblies of \(R \)-enriched rooted trees on \([n]\) having exactly \(\nu \) leaves. Then, for \(\nu \geq 1 \),

\[
\sum_{n=0}^{\infty} \gamma_{n,\nu} x^n / n! \frac{r_0^\nu x^\nu}{\nu!(1 - r_1 x)^{2\nu - 1}} p_\nu(x),
\]

where \(p_\nu(x) = \omega_\nu(x, 0) \) are polynomials defined by

\[
\omega_1(x, t) = G'(t),
\]

\[
\omega_\nu(x, t) = \left((1 - xR'(t)) \frac{\partial}{\partial t} + (2\nu - 3)xR''(t) \right) \omega_{\nu-1}(x, t).
\]

Proof.

Use induction on \(\nu \) in underlying series of the above corollary.
Examples (Some applications to generating series)

- **Ordinary rooted trees having \(\nu \) leaves \((R = E, G = X)\):**

\[
x^\nu (1 - x)^{-2\nu + 1} p_\nu (x) / \nu!,
\]

\[
p_1(x) = 1, \quad p_\nu(x) = x ((1 - x)p'_{\nu - 1}(x) + (2\nu - 3)p_{\nu - 1}(x)).
\]

- **Mobiles having \(\nu \) leaves \((R = 1 + C, G = X)\):**

\[
x^\nu (1 - x)^{-2\nu + 1} q_\nu (x) / \nu!, \quad q_\nu(x) = Q_\nu(x, 0), \quad Q_1(x, t) = 1,
\]

\[
Q_\nu(x, t) = \left((1 - t)(1 - t - x) \frac{\partial}{\partial t} + x + (2\nu - 4)(1 - t) \right) Q_{\nu - 1}(x, t).
\]

- **Endofunctions having \(\nu \) leaves \((R = E, G = S)\):**

\[
x^\nu (1 - x)^{-2\nu + 1} \epsilon_\nu (x) / \nu!, \quad \epsilon_\nu(x) = K_\nu(x, 0), \quad K_1(x, t) = 1,
\]

\[
K_\nu(x, t) = \left((1 - x)(1 - t) \left(x \frac{\partial}{\partial x} + \frac{\partial}{\partial t} \right) + \nu + (\nu - 3)x - (2\nu - 3)xt \right) K_{\nu - 1}(x, t).
\]