

We prove a closed character formula for the symmettional functions in rank of \mathfrak{g} many variables which are easric powers $S^N V(\lambda)$ of a fixed irreducible representation ier to determine than the weight multiplicities of $S^N V(\lambda)$ $V(\lambda)$ of a complex semi-simple Lie algebra g by means of themselves. We compute those rational functions in an partial fraction decomposition. The formula involves ra-

The Character Formula

Let

 $\mathfrak{g} = \mathfrak{a}$ semi-simple complex Lie algebra of rank r,

- X =its weight lattice $X = \bigoplus_{i=1}^{r} \mathbb{Z}\omega_i$,
- Q =its root lattice $Q = \bigoplus_{i=1}^{r} \mathbb{Z} \alpha_i$,
- W =its Weyl group,
- $\rho =$ sum of fundamental weights,
- $V(\lambda)$ = the irreducible representation of highest weight λ ,
- m_{λ} = the weight multiplicity function $m_{\lambda} : X \to \mathbb{N}$, $m_{\lambda}(\nu) = \dim V(\lambda)_{\nu}$,
- $S^N V(\lambda)$ = the *N*-th symmetric power of $V(\lambda)$.

Theorem (Character formula). Let \mathfrak{g} , $V(\lambda)$, m_{λ} be as above and set $q = e^{i\langle \cdot, x \rangle} = (q_1, \ldots, q_r)$. Then,

Char
$$S^N V(\lambda)(ix) = \sum_{\nu \in X} q^{N\nu} \sum_{k=1}^{m_\lambda(\nu)} A_{\nu,k}(q) \cdot p_k(N) \in \mathbb{C}(q_1, \dots, q_{k-1})$$

with rational functions $A_{\nu,k}(q) \in \mathbb{C}(q_1,\ldots,q_r)$ and polynomials $p_k(N) \in \mathbb{Q}[N]$ of degree k-1given by

$$p_k(N) = \binom{N+k-1}{N}$$

Furthermore, for a weight $\mu \in X$ and $l = 0, \ldots, m_{\lambda}(\mu) - 1$ we have

$$A_{\mu,m_{\lambda}(\mu)-l}(q) = \frac{(-1)^{l}}{l!q^{l\mu}} \cdot \frac{d^{l}}{(dz)^{l}} \left[\prod_{\nu \in X \setminus \mu} \frac{1}{(1-q^{\nu}z)^{m_{\lambda}(\nu)}} \right]_{z=q^{2}}$$

Sketch of proof.

1. Molien's formula as stated in [Pro07]:

Char
$$SV(\lambda) = \sum_{N=0}^{\infty} z^N$$
 Char $S^N V(\lambda) = \prod_{\nu \in X} \frac{1}{(1 - e^{\nu} z)^{m_{\lambda} (\mu)}}$

- 2. Partial fraction decomposition of the product expression on the right-hand side with respect to z.
- 3. Compare the coefficients of the resulting power series in z to the graded character of the symmetric algebra of $V(\lambda)$.

One can immediately compute the character of the symmetric powers of a multiplicity free irreducible representation. For example:

Corollary. Let
$$\mathfrak{g} = \mathfrak{sl}(r+1,\mathbb{C})$$
 and consider its fundamental representation $\omega_0 = \omega_{r+1} = 0$. Then,

$$\operatorname{Char} S^N V(\omega_1) = \sum_{i=0}^r \frac{e^{N(-\omega_i + \omega_{i+1})}}{\prod\limits_{j \neq i}^r \left(1 - e^{-\omega_j + \omega_{j+1} - (-\omega_i + \omega_{i+1})}\right)}$$

$$= \sum_{i=0}^r \frac{e^{N(-\omega_i + \omega_{i+1})}}{\prod\limits_{k=1}^i \left(1 - e^{\alpha_k + \alpha_{k+1} + \dots + \alpha_i}\right) \prod\limits_{k=i+1}^r \left(1 - e^{-(\alpha_{k+1} + \omega_{k+1})}\right)}$$

References

[Car05] R. W. Carter. Lie algebras of finite and affine type, volume 96 of Cambridge Studies in Advanced [Bec04] Matthias Beck. The partial-fractions method for counting solutions to integral linear systems. *Mathematics*. Cambridge University Press, Cambridge, 2005. Discrete Comput. Geom., 32(4):437-446, 2004.

losed Character Formula for Symmetric Powers of Irreducible Representations

Stavros Kousidis

Sketch of proof.

- 1. Equation (4) follows immediately from the Theorem.
- terms of the positive roots Q^+ .

formula for irreducible representations.

Weyl's character formula states that for an irreducible representation $V(\lambda)$:

Char
$$V(\lambda) = \sum_{w \in W} \frac{(-1)^w}{\prod_{\beta \in Q^+}}$$

In the case $\mathfrak{g} = \mathfrak{sl}(r+1,\mathbb{C})$ and $S^N V(\omega_1) = V(N\omega_1)$ we can compare Weyl's character formula with the expression in the previous Corollary. Weyl's formula is Weyl group invariant whereas our formula is not. But our formula has only r + 1 summands, individually equipped with r poles, compared to r!summands and (summation independent) $\frac{1}{2}r(r+1)$ poles in Weyl's expression.

Goal I. For arbitrary $\lambda \in X$ - compute an explicit expression for $\operatorname{Char} S^N V(\lambda)$ from the character formula given in the Theorem as it is done in the Corollary for $S^N V(\omega_1) = V(N\omega_1)$. This amounts to give an explicit expression of the rational functions $A_{\mu,m_{\lambda}(\mu)-l}(q)$ stated in the Theorem in terms of the weight multiplicity function $m_{\lambda}: X \to \mathbb{N}$ and (linear combinations of) roots $\alpha \in Q$.

Goal II (rather a bold Question). Is it possible to establish a Weyl group invariant character formula for $S^N V(\lambda)$ from this?

[Bli09] Thomas Bliem. Towards computing vector partition functions by iterated partial fraction decomposi-[EK79] Dan Eustice and M. S. Klamkin. On the coefficients of a partial fraction decomposition. *Amer. Math.* tion. *Preprint*, arXiv:0912.1131v1, 2009. Monthly, 86(6):478-480, 1979.

 $\overline{(\nu)}$.

interesting case which allows a comparison with Weyl's character formula. Furthermore, we introduce a residuetype generating function for the weight multiplicities of

 $v_e w(\lambda +
ho) -
ho$ $(1-e^{-\beta})$

A Residue-Type Generating Function for the Weight Multiplicities

Proposition. Let \mathfrak{g} and $V(\lambda)$ be as above. Let $m_{\lambda,N}$ be the weight multiplicity function of the N-th symmetric power $S^N V(\lambda)$ and $\mu \in X$ be a fixed weight. Then, the formal power series $\sum_{N=0}^{\infty} z^N m_{\lambda,N}(\mu)$ is a holomorphic function in the variable z on $|z| \leq R < 1$. Moreover, we have the identity

$$\sum_{N=0}^{\infty} z^N m_{\lambda,N}(\mu) =$$

Sketch of proof. The dimension of the symmetric power of a representation grows sub-exponentially in N.

With the Theorem at hand we are able to explain why the generating function in Equation (6) is of residue-type.

Corollary (Residue-type). Let \mathfrak{g} and $V(\lambda)$ be as above, and $m_{\lambda,N}$ be the weight multiplicity function of the N-th symmetric power $S^N V(\lambda)$. Let $\mu \in X$ be a fixed weight and denote $q^{\mu} = e^{i\langle \mu, x \rangle}$ as above. Then,

 $m_{\lambda,N}(\mu) = \frac{1}{(2\pi)^2}$

Related Research

 $\phi_A: \mathbb{Z}^m \to \mathbb{N}$ by

 $f_A(z)$

and

formula.

In contrast to the computational and algorithmic aspects of iterated partial fraction decomposition as proposed in [Bec04] and continued e.g. in [Bli09] for "arbitrary" matrices A, our interests are different. They lie in investigating further the closed character formulas for the symmetric powers.

[Lan02] Serge Lang. Algebra, volume 211 of Graduate Texts in Mathematics. Springer-Verlag, New York, third edition, 2002.

$S^N V(\lambda)$ and explain the connections between our character formula, vector partition functions and iterated partial fraction decomposition.

$$= \frac{1}{(2\pi)^r} \int_{T^r} e^{-i\langle\mu,x\rangle} \prod_{\nu \in X} \frac{1}{(1 - e^{i\langle\nu,x\rangle}z)^{m_{\lambda,1}(\nu)}} dx.$$
(6)

$$\frac{1}{T^r} \int_{T^r} q^{-\mu} \sum_{\nu \in X} q^{N\nu} \sum_{k=1}^{m_\lambda(\nu)} A_{\nu,k}(q) \cdot p_k(N) dx.$$
(7)

For an integral matrix $A \in \mathbb{Z}^{(m,d)}$ with $\ker(A) \cap \mathbb{R}^d_+ = \{0\}$ we define the vector partition function

$$b_A(b) = \#\{x \in \mathbb{N}^d : Ax = b\}.$$

Let c_1, \ldots, c_d denote the columns of A and use multiexponent notation $z^b = z_1^{b_1} \cdots z_m^{b_m}$, $b \in \mathbb{Z}^m$. Then, as stated in [Bli09, Equation (1)], on $\{z \in \mathbb{C}^m : |z^{c_k}| < 1 \text{ for } k = 1, \dots, d\}$ we have the identity

$$z) := \sum_{b \in \mathbb{Z}^m} \phi_A(b) z^b = \prod_{k=1}^d \frac{1}{1 - z^{c_k}}$$

 $\phi_A(b) = \operatorname{const} \left[f_A(z) \cdot z^{-b} \right].$

Now, there is an obvious connection between the graded character of the symmetric algebra $SV(\lambda)$ of an irreducible representation $V(\lambda)$ of a complex semi-simple Lie algebra g and the theory of vector partition functions, which is given by Molien's formula. Namely, if g is of rank r, then one has a matrix $A \in \mathbb{Z}^{(r+1,\dim V(\lambda))}$ encoding the weights of $V(\lambda)$ in terms of the coordinate system given by the fundamental weights $\omega_1, \ldots, \omega_r$. This information corresponds to the first r rows of each column of A. In addition to that, we have the (r+1)-th row which associates to the grading given by z in Molien's

[[]Lit94] Peter Littelmann. A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras. Invent. Math., 116(1-3):329-346, 1994.

[[]Pro07] Claudio Procesi. Lie groups. Universitext. Springer, New York, 2007. An approach through invariants and representations.