The Discrete Geometry of Moment Polytopes

Tara S. Holm
Cornell University

FPSAC -- 3 August 2010
Simple polytopes

$\Delta \subseteq \mathbb{R}^d$
Simple polytopes

$$\Delta \subseteq \mathbb{R}^d \rightsquigarrow \mathbf{f} = (f_{-1}, f_0, f_1, \ldots, f_{d-1})$$

$$f_k = \# \text{ k-dimensional faces}$$
Simple polytopes

$\Delta \subseteq \mathbb{R}^d \sim \sim \Rightarrow \mathbf{f} = (f_{-1}, f_0, f_1, \ldots, f_{d-1})$

$f_k = \# k$-dimensional faces

$\mathbf{f} = (1, 4, 4)$ $(1, 6, 6)$ $(1, 4, 6, 4)$ $(1, 8, 12, 6)$ $(1, 10, 15, 7)$
Simple polytopes

\[\Delta \subseteq \mathbb{R}^d \rightsquigarrow \mathbf{f} = (f_{-1}, f_0, f_1, \ldots, f_{d-1}) \]

\[f_k = \# \text{k-dimensional faces} \]

\[\rightsquigarrow \mathbf{h} = (h_0, h_1, \ldots, h_d) \]

\[h_k = \sum_{i=0}^{k} (-1)^{k-i} \binom{d-i}{k-i} f_{i-1} \]

\[\mathbf{f} = (1, 4, 4) \quad (1, 6, 6) \quad (1, 4, 6, 4) \quad (1, 8, 12, 6) \quad (1, 10, 15, 7) \]
Simple polytopes

\[\Delta \subseteq \mathbb{R}^d \leadsto f = (f_{-1}, f_0, f_1, \ldots, f_{d-1}) \]

\[f_k = \# \text{k-dimensional faces} \]

\[\leadsto h = (h_0, h_1, \ldots, h_d) \]

\[h_k = \sum_{i=0}^{k} (-1)^{k-i} \binom{d-i}{k-i} f_{i-1} \]
Simple polytopes

\[\Delta \subseteq \mathbb{R}^d \leadsto f = (f_{-1}, f_0, f_1, \ldots, f_{d-1}) \]

- \(f_k = \# k\text{-dimensional faces} \)
- \(f_k = \# k\text{-dimensional faces} \)
- \(h = (h_0, h_1, \ldots, h_d) \)
- \(h_k = \sum_{i=0}^{k} (-1)^{k-i} \binom{d-i}{k-i} f_{i-1} \)

\[f = (1, 4, 4), (1, 6, 6), (1, 4, 6, 4), (1, 8, 12, 6), (1, 10, 15, 7) \]

\[h = (1, 2, 1), (1, 4, 1), (1, 1, 1, 1), (1, 3, 3, 1), (1, 4, 4, 1) \]

Theorem [Stanley, 1975]:

(a) \(h_k = h_{d-k} \)

(b) \(h_0 \leq h_1 \leq \ldots \leq h_{\left\lfloor \frac{d}{2} \right\rfloor} \)
Simple polytopes

\[\Delta \subseteq \mathbb{R}^d \sim \sim \mathbf{f} = (f_{-1}, f_0, f_1, \ldots, f_{d-1}) \]

\[f_k = \# \text{k-dimensional faces} \]

\[\sim \sim \mathbf{h} = (h_0, h_1, \ldots, h_d) \]

\[h_k = \sum_{i=0}^{k} (-1)^{k-i} \binom{d-i}{k-i} f_{i-1} \]

\[\mathbf{f} = (1, 4, 4) \quad (1, 6, 6) \quad (1, 4, 6, 4) \quad (1, 8, 12, 6) \quad (1, 10, 15, 7) \]

\[\mathbf{h} = (1, 2, 1) \quad (1, 4, 1) \quad (1, 1, 1, 1) \quad (1, 3, 3, 1) \quad (1, 4, 4, 1) \]

Theorem [Stanley, 1975]:

(a) \(h_k = h_{d-k} \) \(\iff \) Poincaré duality

(b) \(h_0 \leq h_1 \leq \cdots \leq h_{\lfloor \frac{d}{2} \rfloor} \)
Simple polytopes

\[\Delta \subseteq \mathbb{R}^d \leadsto f = (f_{-1}, f_0, f_1, \ldots, f_{d-1}) \]

\[f_k = \# k\text{-dimensional faces} \]

\[\leadsto h = (h_0, h_1, \ldots, h_d) \]

\[h_k = \sum_{i=0}^{k} (-1)^{k-i} \binom{d-i}{k-i} f_{i-1} \]

\[f = (1, 4, 4) \quad (1, 6, 6) \quad (1, 4, 6, 4) \quad (1, 8, 12, 6) \quad (1, 10, 15, 7) \]

\[h = (1, 2, 1) \quad (1, 4, 1) \quad (1, 1, 1, 1) \quad (1, 3, 3, 1) \quad (1, 4, 4, 1) \]

Theorem [Stanley, 1975]:

(a) \(h_k = h_{d-k} \) \(\leadsto\) Poincaré duality

(b) \(h_0 \leq h_1 \leq \cdots \leq h_{\lfloor \frac{d}{2} \rfloor} \) \(\leadsto\) hard Lefschetz property
Symplectic manifolds

A symplectic manifold is a manifold.
Symplectic manifolds

A symplectic manifold is a manifold with a two-form $\omega \in \Omega^2(M)$ that is:

- **Closed**: $d\omega = 0$
- **Non-degenerate**: $\omega^n = d\text{Vol} \iff M$ is $2n$-dimensional
Symplectic manifolds

A symplectic manifold is a manifold with a two-form $\omega \in \Omega^2(M)$ that is:

- **Closed:** $d\omega = 0$
- **Non-degenerate:** $\omega^n = d\text{Vol} \leadsto M$ is $2n$-dimensional & orientable
A symplectic manifold is a manifold with a two-form $\omega \in \Omega^2(M)$ that is:

- **Closed**: $d\omega = 0$
- **Non-degenerate**: $\omega^n = d\text{Vol} \iff M$ is $2n$-dimensional & orientable
Symplectic manifolds

A symplectic manifold is a manifold with a two-form $\omega \in \Omega^2(M)$ that is:

- **Closed:** $d\omega = 0$
- **Non-degenerate:** $\omega^n = d\text{Vol} \iff M$ is $2n$-dimensional & orientable
A symplectic manifold is a manifold with a two-form $\omega \in \Omega^2(M)$ that is:

- Closed: $d\omega = 0$
- Non-degenerate: $\omega^n = d\text{Vol} \quad \rightarrow \quad M$ is $2n$-dimensional & orientable
Symplectic manifolds

\((\mathbb{R}^2, \omega = dx \wedge dy) \sim (\mathbb{R}^{2n}, \omega = \sum dx_i \wedge dy_i)\)
Symplectic manifolds

\[(\mathbb{R}^2, \omega = dx \wedge dy) \sim \sim \rightarrow (\mathbb{R}^{2n}, \omega = \sum dx_i \wedge dy_i)\]

Darboux’s Theorem:
We may always choose coordinates \(x_1, \ldots, x_n, y_1, \ldots, y_n\) on \(M\) so that locally

\[\omega = \sum dx_i \wedge dy_i.\]
Darboux’s Theorem:
We may always choose coordinates $x_1, \ldots, x_n, y_1, \ldots, y_n$ on M so that locally
\[
\omega = \sum dx_i \wedge dy_i.
\]

There are no local invariants (like curvature).
Compact examples

- Even-dimensional spheres $S^{2n} = \{ \overline{x} \in \mathbb{R}^{2n+1} \mid \sum x_i^2 = 1 \}$
- Complex projective space $\mathbb{C}P^{n-1}$
- Grassmannian $\mathcal{G}r(k, \mathbb{C}^n)$
- Flag varieties $\mathcal{F}lags(\mathbb{C}^n)$
- Complex projective varieties
- Toric varieties
- Based loops
Compact examples

Even-dimensional spheres $S^{2n} = \{ \overline{x} \in \mathbb{R}^{2n+1} \mid \sum x_i^2 = 1 \}$

Complex projective space $\mathbb{C}P^{n-1}$

Grassmannian $\mathcal{G}r(k, \mathbb{C}^n)$

Flag varieties $\mathcal{F}lags(\mathbb{C}^n)$

Complex projective varieties

Toric varieties

Based loops
Compact examples

- Even-dimensional spheres $S^{2n} = \{ \overline{x} \in \mathbb{R}^{2n+1} \mid \sum x_i^2 = 1 \}$
- Complex projective space $\mathbb{CP}^{n-1} = \{ V \subseteq \mathbb{C}^n \mid \dim_{\mathbb{C}}(V) = 1 \}$
- Grassmannian $\mathcal{G}r(k, \mathbb{C}^n)$
- Flag varieties $\mathcal{F}lags(\mathbb{C}^n)$
- Complex projective varieties
- Toric varieties
- Based loops ($n \geq 2$)
Compact examples

- Even-dimensional spheres $S^{2n} = \{ \overline{x} \in \mathbb{R}^{2n+1} \mid \sum x_i^2 = 1 \}$
- Complex projective space $\mathbb{C}P^{n-1} = \{ V \subseteq \mathbb{C}^n \mid \dim_{\mathbb{C}}(V) = 1 \}$
- Grassmannian $\mathcal{G}r(k, \mathbb{C}^n) = \{ V \subseteq \mathbb{C}^n \mid \dim_{\mathbb{C}}(V) = k \}$
- Flag varieties $\mathcal{F}lags(\mathbb{C}^n)$
- Complex projective varieties
- Toric varieties
- Based loops
Compact examples

- Even-dimensional spheres $S^{2n} = \left\{ \overline{x}^2 \in \mathbb{R}^{2n+1} \mid \sum x_i^2 = 1 \right\}$
- Complex projective space $\mathbb{C}P^{n-1} = \left\{ V \subseteq \mathbb{C}^n \mid \dim_{\mathbb{C}}(V) = 1 \right\}$
- Grassmannian $\mathcal{G}r(k, \mathbb{C}^n) = \left\{ V \subseteq \mathbb{C}^n \mid \dim_{\mathbb{C}}(V) = k \right\}$
- Flag varieties
 \[\mathcal{F}lags(\mathbb{C}^n) = \left\{ V_0 \subseteq V_1 \subseteq \cdots \subseteq V_n = \mathbb{C}^n \mid \dim_{\mathbb{C}}(V_i) = i \right\} \]
- Complex projective varieties
- Toric varieties
- Based loops

$n \geq 2$
Compact examples

- Even-dimensional spheres $S^{2n} = \left\{ \overline{x} \in \mathbb{R}^{2n+1} \mid \sum x_i^2 = 1 \right\}$
- Complex projective space $\mathbb{CP}^{n-1} = \left\{ V \subseteq \mathbb{C}^n \mid \text{dim}_\mathbb{C}(V) = 1 \right\}$
- Grassmannian $\mathcal{G}r(k, \mathbb{C}^n) = \left\{ V \subseteq \mathbb{C}^n \mid \text{dim}_\mathbb{C}(V) = k \right\}$
- Flag varieties $\mathcal{F}lags(\mathbb{C}^n) = \left\{ V_0 \subseteq V_1 \subseteq \cdots \subseteq V_n = \mathbb{C}^n \mid \text{dim}_\mathbb{C}(V_i) = i \right\}$
- Complex projective varieties
- Toric varieties
- Based loops

(n \geq 2)
Compact examples

- Even-dimensional spheres $S^{2n} = \{ \overline{x} \in \mathbb{R}^{2n+1} | \sum x_i^2 = 1 \}$
- Complex projective space $\mathbb{CP}^{n-1} = \{ V \subseteq \mathbb{C}^n | \dim_{\mathbb{C}}(V) = 1 \}$
- Grassmannian $\mathcal{G}r(k, \mathbb{C}^n) = \{ V \subseteq \mathbb{C}^n | \dim_{\mathbb{C}}(V) = k \}$
- Flag varieties
 $\mathcal{F}lags(\mathbb{C}^n) = \{ V_0 \subseteq V_1 \subseteq \cdots \subseteq V_n = \mathbb{C}^n | \dim_{\mathbb{C}}(V_i) = i \}$
- Complex projective varieties
- Toric varieties
- Based loops
Compact examples

- Even-dimensional spheres $S^{2n} = \{ x \in \mathbb{R}^{2n+1} \mid \sum x_i^2 = 1 \}$
- Complex projective space $\mathbb{C}P^{n-1} = \{ V \subseteq \mathbb{C}^n \mid \dim_{\mathbb{C}}(V) = 1 \}$
- Grassmannian $\mathcal{G}r(k, \mathbb{C}^n) = \{ V \subseteq \mathbb{C}^n \mid \dim_{\mathbb{C}}(V) = k \}$
- Flag varieties
 \[\mathcal{F}lags(\mathbb{C}^n) = \{ V_0 \subseteq V_1 \subseteq \cdots \subseteq V_n = \mathbb{C}^n \mid \dim_{\mathbb{C}}(V_i) = i \} \]
- Complex projective varieties
- Toric varieties
- Based loops $\Omega G = \{ \gamma : S^1 \to G \mid \gamma(\text{Id}) = \text{Id} \}$
Example: $\mathcal{P}ol_d(a_1, \ldots, a_n)$

$\in \mathcal{P}ol_2(a_1, \ldots, a_5)$
Example: $\mathcal{Pol}_d(a_1, \ldots, a_n)$

$\in \mathcal{Pol}_2(a_1, \ldots, a_5)$
Example: $\mathcal{P}ol_d(a_1, \ldots, a_n)$
Example: $\mathcal{P}ol_d(a_1, \ldots, a_n)$

\[\mathcal{P}ol_d(a_1, \ldots, a_n) = \{ (\vec{v}_1, \ldots, \vec{v}_n) \mid \vec{v}_i \in \mathbb{R}^d, |v_i| = a_i, \sum \vec{v}_i = \vec{0} \} \quad \text{SO}(d) \]

$\mathcal{P}ol_3(a_1, \ldots, a_n)$ is symplectic! N.B. $d=3!!$
Symplectic actions

Symplectic manifolds often exhibit symmetries, encoded by a group action. (It’s a hard topological question, “How many manifolds do or do not have symmetries?” ...)

DEF: A group action $G \subset M$ is symplectic if it preserves ω; that is, $\tau_g^* \omega = \omega \forall g \in G$.

$S^1 \subset S^2$ by rotation

$S^1 \subset T^2$ by rotation
Symplectic actions

Symplectic manifolds often exhibit symmetries, encoded by a group action. (It’s a hard topological question, “How many manifolds do or do not have symmetries?” ...)

DEF: A group action $G \subseteq M$ is symplectic if it preserves ω; that is,

$$\tau_g^* \omega = \omega \quad \forall \ g \in G.$$

- $S^1 \subseteq S^2$ by rotation
- $SO(3) \subseteq S^2$ by multiplication
- $O(3) \subseteq S^2$ by multiplication
Symplectic actions

Symplectic manifolds often exhibit symmetries, encoded by a group action. (It’s a hard topological question, “How many manifolds do or do not have symmetries?” ...)

DEF: A group action $G \subset C M$ is symplectic if it preserves ω; that is, $\tau^*_g \omega = \omega$ $\forall g \in G$.

$S^1 \subset C S^2$ by rotation

$SO(3) \subset C S^2$ by multiplication

$O(3) \subset C S^2$ by multiplication
Vector fields

DEF: Let G be a Lie group with Lie algebra \mathfrak{g}. Suppose $G \subset M$. For any $\xi \in \mathfrak{g}$, we may define a vector field on M by,

$$\mathcal{X}_\xi(p) = \frac{d}{dt} \left[\exp(t \xi) \cdot p \right] \bigg|_{t=0}.$$
DEF: Suppose $G \subset (M, \omega)$. We say the action is Hamiltonian if

$$\omega(X_\xi, \cdot) = d\phi_\xi \quad \forall \xi \in \mathfrak{g}.$$

Example: $S^1 \subset M = S^2 = \mathbb{CP}^1$

\[
\begin{align*}
\omega &= d\theta \wedge dh \\
X_\xi &= \frac{\partial}{\partial \theta} \\
\omega(X_\xi, \cdot) &= dh \\
\Rightarrow \quad \phi_\xi &= h
\end{align*}
\]
A non-Hamiltonian action

DEF: Suppose $G \subseteq (M, \omega)$. We say the action is **Hamiltonian** if

$$\omega(X_\xi, \cdot) = d\phi^\xi \quad \forall \xi \in \mathfrak{g}.$$

Non-Example: $S^1 \subseteq T^2 = S^1 \times S^1$ rotating the first factor.

$$\omega = dx \wedge dy$$

$$X_\xi = \frac{\partial}{\partial x}$$

$$\omega(X_\xi, \cdot) = dy$$

But $dy \in H^1(T^2; \mathbb{Z})$ is certainly not exact!
Actions on $\mathcal{P}ol_d(a_1, \ldots, a_n)$
Actions on $\mathcal{Pol}_d(a_1, \ldots, a_n)$
Actions on $\mathcal{P}ol_d(a_1, \ldots, a_n)$
Actions on $\mathcal{P}ol_d(a_1, \ldots, a_n)$

$T^2 \subset \mathcal{P}ol_3(a_1, \ldots, a_5)$ is Hamiltonian.
The Moment Map

The Hamiltonian assumption says
\[\omega(X_\xi, \cdot) = d\phi^\xi \quad \forall \xi \in \mathfrak{g}. \]

DEF: Combining these for all \(\xi \in \mathfrak{g} \), we define the **moment map**
\[
\Phi : M \rightarrow \mathfrak{g}^* \\
p \mapsto \left(\begin{array}{c}
\mathfrak{g} \\
\xi \\
\rightarrow \\
\mathbb{R} \\
\phi^\xi(p)
\end{array} \right).
\]

Convexity Theorem [Atiyah, Guillemin-Sternberg]:
If \(T = (S^1)^d \subset (M, \omega) \) is Hamiltonian, \(\Phi(M) \) is a convex polytope.
\[\Phi(M) = \text{Conv}(\Phi(M^T)). \]
Examples
Examples

$\mathbb{C}P^3 \cong \mathcal{G}r(2, \mathbb{C}^4)$

$\mathbb{C}P^1 \times \mathbb{C}P^1 \times \mathbb{C}P^1 \cong \Omega SU(2)$

$\mathcal{P}ol_3(a_1, \ldots, a_5)$
Moment polytope geometry

The moment polytope has additional structure, coming from the orbits of the torus action.

\[
\begin{align*}
\{ \text{Vertices of } \Delta \} & \leftrightarrow \{ \text{T-fixed points} \} \\
\{ \text{Edges of } \Delta \} & \leftrightarrow \{ \text{Points fixed by some } S \cong T^{d-1} \} \\
\{ \text{k-faces of } \Delta \} & \leftrightarrow \{ \text{Points fixed by some } S \cong T^{d-k} \}
\end{align*}
\]
The moment polytope has additional structure, coming from the orbits of the torus action.

\[
\begin{align*}
\{ \text{Vertices of } \Delta \} & \iff \{ \text{T-fixed points} \} \\
\{ \text{Edges of } \Delta \} & \iff \{ \text{Points fixed by some } S \cong T^{d-1} \} \\
\{ k\text{-faces of } \Delta \} & \iff \{ \text{Points fixed by some } S \cong T^{d-k} \}
\end{align*}
\]
Moment polytope geometry

The moment polytope has additional structure, coming from the orbits of the torus action.

\[
\begin{align*}
\{ \text{Vertices of } \Delta \} & \leftrightarrow \{ \text{T-fixed points} \} \\
\{ \text{Edges of } \Delta \} & \leftrightarrow \{ \text{Points fixed by some } S \cong T^{d-1} \} \\
\{ \text{k-faces of } \Delta \} & \leftrightarrow \{ \text{Points fixed by some } S \cong T^{d-k} \}
\end{align*}
\]
Moment polytope geometry

The moment polytope has additional structure, coming from the orbits of the torus action.

\[
\begin{align*}
\{ \text{Vertices of } \Delta \} & \leftrightarrow \{ \text{T-fixed points} \} \\
\{ \text{Edges of } \Delta \} & \leftrightarrow \{ \text{Points fixed by some } S \cong T^{d-1} \} \\
\{ \text{k-faces of } \Delta \} & \leftrightarrow \{ \text{Points fixed by some } S \cong T^{d-k} \}
\end{align*}
\]
Moment polytope geometry

The moment polytope has additional structure, coming from the orbits of the torus action.

\[
\{ \text{Vertices of } \Delta \} \leftrightarrow \{ \text{T-fixed points} \}
\]

\[
\{ \text{Edges of } \Delta \} \leftrightarrow \{ \text{Points fixed by some } S \cong T^{d-1} \}
\]

\[
\{ \text{k-faces of } \Delta \} \leftrightarrow \{ \text{Points fixed by some } S \cong T^{d-k} \}
\]
Moment polytope geometry

The moment polytope has additional structure, coming from the orbits of the torus action.

\[
\begin{align*}
\{ \text{Vertices of } \Delta \} & \leftrightarrow \{ \text{T-fixed points} \} \\
\{ \text{Edges of } \Delta \} & \leftrightarrow \{ \text{Points fixed by some } S \cong T^{d-1} \} \\
\{ \text{k-faces of } \Delta \} & \leftrightarrow \{ \text{Points fixed by some } S \cong T^{d-k} \}
\end{align*}
\]

The moment polytope is a discrete representation of the orbit space M/T.
Chambers of the moment polytope

DEF: The chambers of the moment polytope are the open regions in

$$\Delta - \{(d - 1)\text{-dimensional facets}\}.$$

Questions:

- Can we count the chambers?
- Can we distinguish the chambers?
Chambers of the moment polytope

DEF: The chambers of the moment polytope are the open regions in
\[\Delta = \left\{ (d - 1)\text{-dimensional facets} \right\}. \]

Questions:
- Can we count the chambers?
- Can we distinguish the chambers?

This is hard, even for permutahedra flag manifolds:
DEF: The chambers of the moment polytope are the open regions in
\[\Delta - \{ (d - 1)\text{-dimensional facets} \} \].

Questions:
- Can we count the chambers?
- Can we distinguish the chambers?

This is hard, even for permutahedra \(\leftrightarrow \) flag manifolds:
Chambers of the moment polytope

DEF: The chambers of the moment polytope are the open regions in

\[\Delta - \{ (d - 1)\text{-dimensional facets} \} \]

Questions:

- Can we count the chambers?
- Can we distinguish the chambers?

This is hard, even for permutahedra \leftrightarrow flag manifolds:

Billey, Guillemin and Rassart have shown that a generic permutahedron in \mathbb{R}^3 has 213
Chambers of the moment polytope

DEF: The *chambers* of the moment polytope are the open regions in
\[\Delta = \{(d - 1) \text{-dimensional facets}\}. \]

Questions:
- Can we count the chambers?
- Can we distinguish the chambers?

This is hard, even for permutahedra \(\Leftrightarrow \) flag manifolds:

Billey, Guillemin and Rassart have shown that a generic permutahedron in \(\mathbb{R}^3 \) has 213; 229; 261; 277; 325; or 337 chambers!
Chambers of the moment polytope

To any point μ in a chamber, we may associate an ideal

$$I_\mu \subseteq H^*_T(M).$$

Theorem [Goldin-H-Jeffrey]:
Suppose T acts on M Hamiltonianly with isolated fixed points, and μ_1 and μ_2 are elements of chambers of Δ. Then

$$I_{\mu_1} = I_{\mu_2}$$

if and only if μ_1 and μ_2 are in the same chamber of Δ.
Chambers of the moment polytope

To any point μ in a chamber, we may associate an ideal

$$I_\mu \subseteq H^*_T(M).$$

Theorem [Goldin-H-Jeffrey]:
Suppose T acts on M Hamiltonianly with isolated fixed points, and μ_1 and μ_2 are elements of chambers of Δ. Then

$$I_{\mu_1} = I_{\mu_2}$$

if and only if μ_1 and μ_2 are in the same chamber of Δ.
Chambers of the moment polytope

To any point μ in a chamber, we may associate an ideal

$$I_\mu \subseteq H^*_T(M).$$

Theorem [Goldin-H-Jeffrey]:
Suppose T acts on M Hamiltonianly with isolated fixed points, and μ_1 and μ_2 are elements of chambers of Δ. Then

$$I_{\mu_1} = I_{\mu_2}$$

if and only if μ_1 and μ_2 are in the same chamber of Δ.

The classes that distinguish chambers of the permutahedron are called permuted Schubert polynomials.
Chambers of the moment polytope

To any point μ in a chamber, we may associate an ideal

$$I_\mu \subseteq H^*_T(M).$$

Theorem [Goldin-H-Jeffrey]:
Suppose T acts on M Hamiltonianly with isolated fixed points, and μ_1 and μ_2 are elements of chambers of Δ. Then

$$I_{\mu_1} = I_{\mu_2}$$

if and only if μ_1 and μ_2 are in the same chamber of Δ.

The classes that distinguish chambers of the permutahedron are called permuted Schubert polynomials.
Equivariant cohomology

Equivariant cohomology is a generalized cohomology theory in the equivariant category.
Equivariant cohomology is a generalized cohomology theory in the equivariant category.

Functor $\text{Spaces} \rightarrow \text{Rings}$
Equivariant cohomology is a generalized cohomology theory in the equivariant category.

Functor \(\text{Spaces} \rightarrow \text{Rings} \)

\[
G \mathcal{C} M \overset{\sim}{\longrightarrow} H^*_G(M; \mathbb{Z}) \text{ or } H^*_G(M; \mathbb{R})
\]

\(f : M \rightarrow N \implies f^* : H^*_G(N) \rightarrow H^*_G(M) \)

Mayer-Vietoris

Et cetera
Equivariant cohomology is a generalized cohomology theory in the equivariant category.

- **Functor** \(\text{Spaces} \rightarrow \text{Rings} \)
- **Equivariant cohomology of a point is not** \(\mathbb{Z} \)
Equivariant cohomology is a generalized cohomology theory in the equivariant category.

 Functor \(\text{Spaces} \rightarrow \text{Rings} \)

Equivariant cohomology of a point is not \(\mathbb{Z} \)

\[
T = T^d = S^1 \times \cdots \times S^1 \leadsto H_T^*(\text{pt}; \mathbb{Z}) = \mathbb{Z}[x_1, \ldots, x_d] \\
\text{deg}(x_i) = 2
\]
Equivariant cohomology is a generalized cohomology theory in the equivariant category.

Functor $\text{Spaces} \longrightarrow \text{Rings}$

Equivariant cohomology of a point is not \mathbb{Z}

$T = T^d = S^1 \times \cdots \times S^1 \leadsto$

$H_T^*(pt; \mathbb{Z}) = \mathbb{Z}[x_1, \ldots, x_d]$

$\deg(x_i) = 2$

$H_T^*(pt; \mathbb{R}) = \mathbb{R}[x_1, \ldots, x_d] \cong \text{Sym}(t^*)$
Equivariant cohomology

Equivariant cohomology is a generalized cohomology theory in the equivariant category.

- **Functor** $\text{Spaces} \rightarrow \text{Rings}$

- Equivariant cohomology of a point is not \mathbb{Z}

$$T = T^d = S^1 \times \cdots \times S^1 \mapsto$$

$$H_T^* (\text{pt}; \mathbb{Z}) = \mathbb{Z}[x_1, \ldots, x_d]$$

$$\text{deg}(x_i) = 2$$

$$H_T^* (\text{pt}; \mathbb{R}) = \mathbb{R}[x_1, \ldots, x_d] \cong \text{Sym}(t^*)$$
Equivariant cohomology is a generalized cohomology theory in the equivariant category.

- Functor \(\text{Spaces} \rightarrow \text{Rings} \)
- Equivariant cohomology of a point is not \(\mathbb{Z} \)
- Spaces, maps should be equivariant
Equivariant cohomology

Equivariant cohomology is a generalized cohomology theory in the equivariant category.

- Functor $\text{Spaces} \rightarrow \text{Rings}$
- Equivariant cohomology of a point is not \mathbb{Z}
- Spaces, maps should be equivariant

\[G \subset M \xrightarrow{\sim} H^*_G(M; \mathbb{Z}) \text{ or } H^*_G(M; \mathbb{R}) \]
\[f : M \rightarrow N \Rightarrow f^* : H^*_G(N) \rightarrow H^*_G(M) \]

Mayer-Vietoris

Et cetera
Equivariant cohomology is a generalized cohomology theory in the equivariant category.

- Functor \(\text{Spaces} \rightarrow \text{Rings} \)
- Equivariant cohomology of a point is not \(\mathbb{Z} \)
- Spaces, maps should be equivariant
- If \(G \curvearrowright M \) is a free action, then \(H^*_G(M) = H^*(M/G) \)
Equivariant cohomology is a generalized cohomology theory in the equivariant category.

- **Functor** $\text{Spaces} \longrightarrow \text{Rings}$
- Equivariant cohomology of a point is not \mathbb{Z}
- Spaces, maps should be equivariant
- If $G \subset C M$ is a free action, then $H^*_G(M) = H^*(M/G)$
Cohomological Localization

\[M^T \xrightarrow{\sim} M \quad \xrightarrow{\sim} \quad H^*_T(M; \mathbb{R}) \rightarrow H^*_T(M^T; \mathbb{R}) \]

Borel’s Theorem:
The kernel and cokernel of the map

\[H^*_T(M; \mathbb{Q}) \rightarrow H^*_T(M^T; \mathbb{Q}) \]

are torsion submodules (over \(H^*_T(pt; \mathbb{Q}) \)).
Cohomological Localization

\[M^T \xrightarrow{c} M \xrightarrow{\sim} H^*_T(M; R) \rightarrow H^*_T(M^T; R) \]

Borel’s Theorem:
The kernel and cokernel of the map

\[H^*_T(M; \mathbb{Q}) \rightarrow H^*_T(M^T; \mathbb{Q}) \]

are torsion submodules (over \(H^*_T(pt; \mathbb{Q}) \)).

Theorem [Frankel, Atiyah, Kirwan]:
If \(T^C M \) is a compact Hamiltonian \(T \)-manifold, then

\[H^*_T(M; \mathbb{Q}) \rightarrow H^*_T(M^T; \mathbb{Q}) \]

is an injection.
Cohomological Localization

\[M^T \rightarrowtail M \xrightarrow{\sim} H^*_T(M; R) \rightarrow H^*_T(M^T; R) \]

Borel’s Theorem:
The kernel and cokernel of the map
\[H^*_T(M; \mathbb{Q}) \rightarrow H^*_T(M^T; \mathbb{Q}) \]
are torsion submodules (over \(H^*_T(pt; \mathbb{Q}) \)).

Theorem [Frankel, Atiyah, Kirwan]:
If \(T \subseteq M \) is a compact Hamiltonian \(T \)-manifold, then
\[H^*_T(M; \mathbb{Q}) \rightarrow H^*_T(M^T; \mathbb{Q}) \]
is an injection. *(The statement sometimes holds over \(\mathbb{Z} \).)*
Example

\[T^3 \subset Gr(2, \mathbb{C}^4) \sim \sim \to H^*_T(Gr(2, \mathbb{C}^4); \mathbb{Z}) \subseteq \bigoplus_{i=1}^{6} \mathbb{Z}[x, y, z] \]
Example

$T^3 \subset Gr(2, \mathbb{C}^4) \xrightarrow{\Phi} H_T^*(Gr(2, \mathbb{C}^4); \mathbb{Z}) \subseteq \bigoplus_{i=1}^{6} \mathbb{Z}[x, y, z]$
Equivariant cohomology

\[M^T \xrightarrow{\sim} M \quad \xrightarrow{\sim} \quad H^*_T(M; R) \rightarrow H^*_T(M^T; R) \]

Equivariant cohomology

\[\mathcal{M}^T \rightarrow \mathcal{M} \quad \overset{\sim}{\longrightarrow} \quad H_T^*(\mathcal{M}; R) \rightarrow H_T^*(\mathcal{M}^T; R) \]

\[\alpha \in H_T^*(\mathcal{M}; R) \quad \mapsto \quad (\alpha|_N, \alpha|_S) \in \mathbb{R}[x] \oplus \mathbb{R}[x] \]
Equivariant cohomology

\[M^T \xrightarrow{\sim} M \xrightarrow{\sim} H^*_T(M; R) \to H^*_T(M^T; R) \]

\[\alpha \in H^*_T(M; R) \implies (\alpha|_N, \alpha|_S) \in \mathbb{R}[x] \oplus \mathbb{R}[x] \]

\[\int_M \alpha = \sum_{F \subseteq M^T} \int_F \frac{\alpha|_F}{e_T(\nu(F \subseteq M))} \implies \frac{\alpha|_N}{x} + \frac{\alpha|_S}{-x} \in \mathbb{R}[x] \]

\[\iff x \mid (\alpha|_N - \alpha|_S) \]
Equivariant cohomology

\[M^T \hookrightarrow M \quad \sim \sim \quad H^*_T(M; R) \rightarrow H^*_T(M^T; R) \]

Equivariant cohomology

\[M^T \hookrightarrow M \xrightarrow{\sim} H^*_T(M; R) \to H^*_T(M^T; R) \]

Equivariant cohomology

\[
\mathcal{M}^T \xrightarrow{\sim} \mathcal{M} \xrightarrow{\sim} H_\mathcal{T}^*(\mathcal{M}; R) \rightarrow H_\mathcal{T}^*(\mathcal{M}^T; R)
\]

Equivariant cohomology of ΩG

Theorem [Harada-Henriques-H.]:
The GKM description works, even in infinite dimensional cases, for

- Equivariant cohomology $H^*_T(M; \mathbb{Q})$
 (Sometimes integrally!) $H^*_T(M; \mathbb{Z})$
- Equivariant K-theory $K^*_T(M)$
- Equivariant cobordism $MU^*_T(M)$
Equivariant cohomology of ΩG

Theorem [Harada-Henriques-H.]:
The GKM description works, even in infinite dimensional cases, for

- Equivariant cohomology $H_T^*(M; \mathbb{Q})$
- (Sometimes integrally!) $H_T^*(M; \mathbb{Z})$
- Equivariant K-theory $K_T^*(M)$
- Equivariant cobordism $MU_T^*(M)$
Theorem [Pabiniak]:
When a Hamiltonian circle action has isolated fixed points, and if there is a basis of $H^*_T(M; \mathbb{Q})$, then the integration formula gives a set of relations that describe

$$H^*_T(M; \mathbb{Q}) \subseteq H^*_T(M^T; \mathbb{Q}).$$
Theorem [Pabiniak]:
When a Hamiltonian circle action has isolated fixed points, and if there is a basis of $H^*_T(M; \mathbb{Q})$, then the integration formula gives a set of relations that describe

$$H^*_T(M; \mathbb{Q}) \subseteq H^*_T(M^T; \mathbb{Q}).$$

Example:
There is a Hamiltonian circle action on $\mathbb{C}P^1 \times \mathbb{C}P^1 \times \mathbb{C}P^1$, with 8 isolated fixed points. The moment map image is
When the GKM description does not work ...

Theorem [Pabiniak]:
When a Hamiltonian circle action has isolated fixed points, and if there is a basis of $\mathbb{H}_T^*(M; \mathbb{Q})$, then the integration formula gives a set of relations that describe

$$\mathbb{H}_T^*(M; \mathbb{Q}) \subseteq \mathbb{H}_T^*(M^T; \mathbb{Q}).$$

Example:
There is a Hamiltonian circle action on $\mathbb{C}P^1 \times \mathbb{C}P^1 \times \mathbb{C}P^1$, with 8 isolated fixed points. The moment map image is

1. 2. 3. 4. 5. 6. 7. 8.

The relations: $(f_i - f_j) \in x \cdot \mathbb{Q}[x] \quad \forall \ i, j$
When the GKM description does not work ...

Theorem [Pabiniak]:
When a Hamiltonian circle action has isolated fixed points, and if there is a basis of $H^*_T(M; \mathbb{Q})$, then the integration formula gives a set of relations that describe

$$H^*_T(M; \mathbb{Q}) \subseteq H^*_T(M^T; \mathbb{Q}).$$

Example:
There is a Hamiltonian circle action on $\mathbb{CP}^1 \times \mathbb{CP}^1 \times \mathbb{CP}^1$, with 8 isolated fixed points. The moment map image is

$$\begin{align*}
1 & \quad 2 & \quad 3 & \quad 4 & \quad 5 & \quad 6 & \quad 7 & \quad 8
\end{align*}$$

The relations:

$$\begin{align*}
(f_i - f_j) & \in x \cdot \mathbb{Q}[x] \quad \forall \ i, j \\
f_4 - f_5 - f_6 - f_7 + 2f_8 & \\
f_3 - f_4 - f_5 + f_6 & \\
f_2 - f_3 - f_6 + f_7 & \\
2f_1 - f_2 - f_3 - f_4 + f_5 &
\end{align*}$$

\[\in x^2 \cdot \mathbb{Q}[x] \]
When the GKM description does not work ...

Theorem [Pabiniak]:
When a Hamiltonian circle action has isolated fixed points, and if there is a basis of \(H^*_T(M; \mathbb{Q}) \), then the integration formula gives a set of relations that describe

\[
H^*_T(M; \mathbb{Q}) \subseteq H^*_T(M^T; \mathbb{Q}).
\]

Example:
There is a Hamiltonian circle action on \(\mathbb{C}P^1 \times \mathbb{C}P^1 \times \mathbb{C}P^1 \), with 8 isolated fixed points. The moment map image is

The relations:
\[
(f_i - f_j) \in x \cdot \mathbb{Q}[x] \quad \forall \ i, j
\]

\[
\left\{ \begin{align*}
 f_4 - f_5 - f_6 - f_7 + 2f_8 \\
 f_3 - f_4 - f_5 + f_6 \\
 f_2 - f_3 - f_6 + f_7 \\
 2f_1 - f_2 - f_3 - f_4 + f_5 \\
 2f_1 - f_2 - f_3 - 2f_4 + 2f_5 + f_6 + f_7 - 2f_8
\end{align*} \right\} \in x^2 \cdot \mathbb{Q}[x]
\]

\[
2f_1 - f_2 - f_3 - 2f_4 + 2f_5 + f_6 + f_7 - 2f_8 \in x^3 \cdot \mathbb{Q}[x]
\]
Cohomology of quotients

To any point μ in a chamber, the submanifold

$$\Phi^{-1}(\mu) \subset M$$

is T-invariant. If the T-action is free,

$$M/\!/T(\mu) = \Phi^{-1}(\mu)/T$$

is again a symplectic manifold called the **symplectic quotient**.
Cohomology of quotients

To any point \(\mu \) in a chamber, the submanifold

\[\Phi^{-1}(\mu) \subset M \]

is \(T \)-invariant. If the \(T \)-action is free,

\[M//T(\mu) = \Phi^{-1}(\mu)/T \]

is again a symplectic manifold called the symplectic quotient.

Theorem [Kirwan]:

The inclusion \(\Phi^{-1}(\mu) \hookrightarrow M \) induces a surjection

\[\kappa_\mu : H^*_T(M; \mathbb{R}) \to H^*(M//T(\mu); \mathbb{R}). \]
Cohomology of quotients

To any point μ in a chamber, the submanifold

\[\Phi^{-1}(\mu) \subset M \]

is T-invariant. If the T-action is free,

\[M // \text{T}(\mu) = \Phi^{-1}(\mu) / \text{T} \]

is again a symplectic manifold called the symplectic quotient.

Theorem [Kirwan]:
The inclusion \(\Phi^{-1}(\mu) \hookrightarrow M \) induces a surjection

\[\kappa_\mu : H^*_T(M; \mathbb{R}) \rightarrow H^*(M // \text{T}(\mu); \mathbb{R}). \]

The kernel \(\text{ker}(\kappa_\mu) = I_\mu \).
Cohomology of quotients

Theorem [Kirwan]:
The inclusion $\Phi^{-1}(\mu) \hookrightarrow M$ induces a surjection

$$\kappa_\mu : H^*_T(M; \mathbb{R}) \to H^*(M//T(\mu); \mathbb{R}).$$

The kernel $\ker(\kappa_\mu) = I_\mu$.

Comments:
- The kernel is often combinatorially computable
 [Tolman-Weitsman; Goldin]
- The ring $H^*(M//T(\mu); \mathbb{R})$ does NOT distinguish the chambers!
- A similar result is known in K-theory
 [Harada-Landweber]
- Similar results can be formulated for stringy invariants
Theorem [Hausmann-Faber-Schütz]:

When $M = \mathcal{G}r(2, \mathbb{C}^d)$, the ring $H^*(M//T(\mu); \mathbb{R})$ DOES distinguish the chambers, for $d \geq 5$.
Theorem [Hausmann-Faber-Schütz]:
When $M = \mathcal{G}r(2, \mathbb{C}^d)$, the ring $H^*(M//T(\mu); \mathbb{R})$ DOES distinguish the chambers, for $d \geq 5$. (Up to a natural action of S_d.)
Theorem [Hausmann-Faber-Schütz]:
When $M = \mathcal{G}r(2, \mathbb{C}^d)$, the ring $H^*(M//T(\mu); \mathbb{R})$ DOES distinguish the chambers, for $d \geq 5$. (Up to a natural action of S_d.)

N.B. $\mathcal{G}r(2, \mathbb{C}^d)//T(\mu) \cong \mathcal{P}ol(\alpha_\mu)$
Chambers and polygon spaces

Theorem [Hausmann-Faber-Schütz]:
When $M = \mathcal{G}r(2, \mathbb{C}^d)$, the ring $H^*(M//T(\mu); \mathbb{R})$ DOES distinguish the chambers, for $d \geq 5$. (Up to a natural action of S_d.)

N.B. $\mathcal{G}r(2, \mathbb{C}^d)//T(\mu) \cong \mathcal{P}ol(a_\mu)$

Comments:
- The proof is algebraic, passing to the real points
- Does a similar result hold for $\mathcal{G}r(k, \mathbb{C}^d)$, for some values of d?
- How does this relate to these questions for $\mathcal{F}lags(\mathbb{C}^d)$?