
Hypergeometric series with algebro-geometric
dressing

Alicia Dickenstein

Universidad de Buenos Aires

FPSAC 2010, 08/05/10

A. Dickenstein (U. Buenos Aires) Hyp. series with AG dressing FPSAC 2010, 08/05/10 1 / 46



Based on joint work:

The structure of bivariate rational hypergeometric functions (with
Eduardo Cattani and Fernando Rodrı́guez Villegas) arXiv:0907.0790,
to appear: IMRN.

Bivariate hypergeometric D-modules (with Laura Matusevich and
Timur Sadykov) Advances in Math., 2005.

Rational Hypergeometric functions (with Eduardo Cattani and Bernd
Sturmfels) Compositio Math., 2001.

Binomial D-modules (with Laura Matusevich and Ezra Miller) Duke
Math. J., 2010.

A. Dickenstein (U. Buenos Aires) Hyp. series with AG dressing FPSAC 2010, 08/05/10 2 / 46



Based on joint work:

The structure of bivariate rational hypergeometric functions (with
Eduardo Cattani and Fernando Rodrı́guez Villegas) arXiv:0907.0790,
to appear: IMRN.

Bivariate hypergeometric D-modules (with Laura Matusevich and
Timur Sadykov) Advances in Math., 2005.

Rational Hypergeometric functions (with Eduardo Cattani and Bernd
Sturmfels) Compositio Math., 2001.

Binomial D-modules (with Laura Matusevich and Ezra Miller) Duke
Math. J., 2010.

A. Dickenstein (U. Buenos Aires) Hyp. series with AG dressing FPSAC 2010, 08/05/10 2 / 46



Based on joint work:

The structure of bivariate rational hypergeometric functions (with
Eduardo Cattani and Fernando Rodrı́guez Villegas) arXiv:0907.0790,
to appear: IMRN.

Bivariate hypergeometric D-modules (with Laura Matusevich and
Timur Sadykov) Advances in Math., 2005.

Rational Hypergeometric functions (with Eduardo Cattani and Bernd
Sturmfels) Compositio Math., 2001.

Binomial D-modules (with Laura Matusevich and Ezra Miller) Duke
Math. J., 2010.

A. Dickenstein (U. Buenos Aires) Hyp. series with AG dressing FPSAC 2010, 08/05/10 2 / 46



Based on joint work:

The structure of bivariate rational hypergeometric functions (with
Eduardo Cattani and Fernando Rodrı́guez Villegas) arXiv:0907.0790,
to appear: IMRN.

Bivariate hypergeometric D-modules (with Laura Matusevich and
Timur Sadykov) Advances in Math., 2005.

Rational Hypergeometric functions (with Eduardo Cattani and Bernd
Sturmfels) Compositio Math., 2001.

Binomial D-modules (with Laura Matusevich and Ezra Miller) Duke
Math. J., 2010.

A. Dickenstein (U. Buenos Aires) Hyp. series with AG dressing FPSAC 2010, 08/05/10 2 / 46



Outline

Aim and plan of the talk
Aim: Show two sample results on bivariate hypergeometric
series/recurrences with inspiration/proof driven by algebraic
geometry.

1. First problem: Solutions to hypergeometric recurrences in ℤ2.

2. Second problem: Characterize hypergeometric rational series in 2
variables.

3. Definitions/properties concerning A-hypergeometric systems and
toric residues.
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Solutions to hypergeometric recurrences

An :=
(�)n(�)n

(
)nn!
, F(�, �, 
; x) =

∑

n≥0

Anxn.

(c)n = c(c + 1) . . . (c + n − 1), (1)n = n!, Pochammer symbol

Key equivalence
The coefficients An satisfy the following recurrence:

(1 + n)(
 + n)An+1 − (�+ n)(� + n)An = 0 (1)

(1) is equivalent to the fact that F(�, �, 
; x) satisfies Gauss differential
equation (Kummer, Riemann):

[Θ(Θ + 
 − 1)− x(Θ + �)(Θ + �)](F) = 0, Θ = x
d
dx
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Solutions to hypergeometric recurrences

Bn :=
(�)n(�)n

(
)n(�)n
, 
, � /∈ ℤ<0, G(�, �, 
, �; x) =

∑

n≥0

Bnxn.

Caveat

(� + n)(
 + n)Bn+1 − (�+ n)(� + n)Bn = 0, for all n ∈ ℕ. (3)

but G(�, �, 
; x) does not satisfy the differential equation:

[(Θ + � − 1)(Θ + 
 − 1)− x(Θ + �)(Θ + �)](G) = 0.
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Hypergeometric recurrences in two variables

Naive generalization

Let amn, m, n ∈ ℕ such that there exist two rational functions R1(m, n),
R2(m, n) expressible as products of (affine) linear functions in (m, n),
such that

am+1,n

amn
= R1(m, n),

am,n+1

amn
= R2(m, n) (5)

(with obvious compatibility conditions).
Write

R1(m, n) =
P1(m, n)

Q1(m + 1, n)
, R2(m, n) =

P2(m, n)
Q2(m, n + 1)

.
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Hypergeometric recurrences in two variables

Naive generalization, suite

Consider the generating function F(x1, x2) =
∑

m,n∈ℕ amn xm
1 xn

2 and the
differential operators (�i = xi

∂
∂xi

):

Δ1 = Q1(�1, �2)− x1P1(�1, �2) Δ2 = Q2(�1, �2)− x2P2(�1, �2).

Then, the recurrences (5) in the coefficients amn are equivalent to
Δ1(F) = Δ2(F) = 0 if Q1(0, n) = Q2(m, 0) = 0 and in this case, if we
extend the definition of amn by 0, the recurrences

Q1(m + 1, n)am+1,n − P1(m, n) = Q2(m, n + 1)am,n+1 − P2(m, n) = 0

hold for all (m, n) ∈ ℤ2.
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Two examples from combinatorics

Dissections
A subdivision of a regular n-gon into (m + 1) cells by means of
nonintersecting diagonals is called a dissection.

How many dissections are there?

dm,n =
1

m + 1

(

n − 3
m

)(

m + n − 1
m

)

; 0 ≤ m ≤ n − 3.

So, the generating function is naturally defined for (m, n) belonging to
the lattice points in the rational cone {(a, b)/0 ≤ a ≤ b − 3} (and 0
outside).
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Two examples from combinatorics

[Example 9.2, Gessell and Xin, The generating function of
ternary trees and continued fractions, EJC ’06]

GX(x, y) =
1 − xy

1 − xy2 − 3xy − x2y
=

∑

m,n≥0

(

m + n
2m − n

)

xmyn,

where
(a

b

)

is defined as 0 if b < 0 or a − b < 0.
So we are summing over the lattice points in the convex rational cone
{(a, b) ∈ ℝ2 : 2a − b ≥ 0, 2b − a ≥ 0} = ℝ≥0(1, 2) + ℝ≥0(2, 1). Or: the
terms are defined over ℤ2 extending by 0 outside the cone.
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Our results through an example

Data

Consider the hypergeometric terms am,n = (−1)n (2m−n+2)!
n!m! (m−2n)! for (m, n)

integers with m − 2n ≥ 0, n ≥ 0, which satisfy the recurrences:

am+1,n

am,n
=

(2m − n + 4) (2m − n + 3)
(m + 1) (m + 1 − 2n)

=
P1(m, n)

Q1(m + 1, n)

P1(m, n) = (2m − n + 4) (2m − n + 3), Q1(m, n) = m (m − 2n)

am,n+1

am,n
= −

(m − 2n) (m − 2n − 1)
(2m − n + 2) (n + 1)

=
P2(m, n)

Q2(m, n + 1)

P2(m, n) = −(m − 2n) (m − 2n − 1), Q2(m, n) = (2m − n + 3) n
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Our results through an example

We have that the terms tm,n = amn for m − 2n ≥ 0, n ≥ 0 and t(m,n) = 0
for any other (m, n) ∈ ℤ2, satisfy the recurrences:

Q1(m+1, n)tm+1,n−P1(m, n)tm,n = Q2(m, n+1)t(m,n+1)−P2(m, n)tm,n = 0.
(6)

Question

Which other terms tm,n, (m, n) ∈ ℤ2 satisfy (6)?

Remark
When the linear forms in the polynomials Pi,Qi defining the
recurrences have generic constant terms, the solution is given by the
Ore-Sato coefficients.
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Our results through an example

Question

Which other terms tm,n, (m, n) ∈ ℤ2 satisfy (6)?

Answer
There are three other solutions bmn, cmn, dmn (up to linear combinations)
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Our results through an example

Answer
There are four solutions amn, bmn, cmn, dmn (up to linear combinations),
with generating series F1, . . . ,F4:

am,n = (−1)n (2m−n+2)!
n!m! (m−2n)! , F1 =

∑

m−2n≥0
n≥0

am,n xm
1 xn

2,

bm,n = (−1)m (2m−n−1)!
n!m! (−2m+n+3)! , F2 =

∑

−2m+n≥3
m≥0

bm,n xm
1 xn

2

cm,n = (−1)m+n (−m−1)! (−n−1)!
(m−2n)! (−2m+n−3)! , F3 =

∑

m−2n≥0
−2m+n≥3

cm,n xm
1 xn

2

d−2,−1 = 1, F4 = x−2
1 x−1

2 .

In all cases, tmn = 0 outside the support of the series.
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Pictorially
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Explanations

The generating functions Fi satisfy the differential equations:
[Θ1(Θ1 − 2Θ2)− x1(2Θ1 −Θ2 + 4) (2Θ1 −Θ2 + 3)](F) = 0,
[Θ2(−2Θ1 +Θ2 − 3)− x2(2Θ2 −Θ1) (2Θ2 −Θ1 + 1)](F) = 0.

Consider the system of binomial equations:

q1 = ∂1
1∂3

1 − ∂2
2, q2 = ∂2

1∂4
1 − ∂3

2

in the commutative polynomial ring ℂ[∂1, . . . , ∂4].

The zero set q1 = q2 = 0 has two irreducible components, one of
degree 3 and mutiplicity 1, which intersects (ℂ∗)4 (it is the twisted
cubic), and another component “at infinity”: {∂2 = ∂3 = 0}, of
degree 1 and multiplicity 1 = min{2 × 2, 1 × 1}.
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Explanations

Consider the system of binomial equations:

q1 = ∂1
1∂

1
3 − ∂2

2 , q2 = ∂1
2∂

1
4 − ∂2

3

in the commutative polynomial ring ℂ[∂1, . . . , ∂4].
The zero set q1 = q2 = 0 has two irreducible components, one of
degree 3 and mutiplicity 1, which intersects (ℂ∗)4, and another
component “at infinity”: {∂2 = ∂3 = 0}, of degree 1 and multiplicity
1 = min{2 × 2, 1 × 1}.
This multiplicity equals the intersection multiplicity at (0, 0) of the
system of two binomials in two variables:

p1 = ∂a
3 − ∂b

2 , p2 = ∂c
2 − ∂d

3 , a = 1, b = 2, c = 1, d = 2

.
The multiplicity of this only (non homogeneous) component at
infinity is equal to the dimension of the space of solutions of the
recurrences with finite support.
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Finite recurrences and polynomial solutions
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General picture

Let B ∈ ℤn×2 with rows b1, . . . , bn satisfying b1 + ⋅ ⋅ ⋅+ bn = 0.

Pi =
∏

bji<0

∣bji∣−1
∏

l=0

(bj ⋅ � + cj − l), (7)

Qi =
∏

bji>0

bji−1
∏

l=0

(bj ⋅ � + cj − l), and (8)

Hi = Qi − xiPi, (9)

where bj ⋅ � =
∑2

k=1 bjk�xk .
The operators Hi are called Horn operators and generate the left ideal
Horn (ℬ, c) in the Weyl algebra D2. Call di =

∑

bij>0 bij = −
∑

bij<0 bij the
order of the operator Hi.
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General picture

Let B ∈ ℤn×2 as above and let A ∈ ℤ(n−2)×n such that the columns
b(1), b(2) of B span kerℚ(A).
Write any vector u ∈ ℝn as u = u+ − u−, where (u+)i = max(ui, 0), and
(u−)i = −min(ui, 0).

Definition

Ti = ∂b(i)
+ − ∂b(i)

− , i = 1, 2.
The left Dn-ideal Hℬ(c) is defined by:

Hℬ(c) = ⟨T1, T2⟩+ ⟨A ⋅ � − A ⋅ c⟩ ⊆ Dn.
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General picture

Theorem
[D.- Matusevich - Sadykov ’05] For generic complex parameters c1, . . . , cn, the
ideals Horn (ℬ, c) and Hℬ(c) are holonomic. Moreover,

rank(Hℬ(c)) = rank(Horn (ℬ, c)) = d1d2 −
∑

bi, bj
depdt

�ij = g ⋅ vol(A) +
∑

bi, bj
indepdt

�ij ,

where the the pairs bi, bj of rows lie in opposite open quadrants of ℤ2.

Remarks
Solutions to recurrences with finite support correspond to (Laurent)
polynomial solutions. These solutions come from (non homogeneous)
primary components at infinity of the binomial ideal ⟨T1,T2⟩. There are

∑

�ij

many linearly independent. For special parameters a special study is needed,
along the lines in [D. - Matusevich and Miller ’10].
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General phylosophy

Moral of this story
Key to the answer it the homogenization and translation to the A-side!
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Examples of rational bivariate hypergeometric series

The proof in the talk!

Lemma: The series f(s1,s2)(x) :=
∑

m∈ℕ2
(s1m1+s2m2)!
(s1m1)!(s2m2)!

xm1
1 xm2

2 .

is a rational function for all (s1, s2) ∈ ℕ2.

Proof: f(0,0)(x1, x2) =
∑

m∈ℕ2 xm1
1 xm2

2 = 1
(1−x1)(1−x2)

,

f(1,1)(x) =
∑

m∈ℕ2
(m1+m2)!

m1! m2!
xm1

1 xm2
2 = 1

1−x1−x2
,

f(2,2)(x2
1, x2

2) =
∑

m∈ℕ2
(2m1+2m2)!
(2m1)!(2m2)!

x2m1
1 x2m2

2 =

1
4 (f(1,1)(x1, x2) + f(1,1)(−x1, x2) + f(1,1)(x1,−x2) + f(1,1)(−x1,−x2)) =

1−x2
1−x2

2

1−2x2
1−2x2

2−2x2
1x2

2+x4
1+x4

2
,

f(2,2)(x1, x2) =
1−x1−x2

1−2x1−2x2−2x1x2+x2
1+x2

2
.⋄
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Using residues

A second proof!

Proof: The series f(s1,s2)(x) :=
∑

m∈ℕ2
(s1m1+s2m2)!
(s1m1)!(s2m2)!

xm1
1 xm2

2 . defines a

rational function for all (s1, s2) ∈ ℕ2 because it equals the following
residue:

f(s1,s2)(x) =
∑

�
s1
1 =−x1,�

s2
2 =−x2

Res�

(

ts1
1 ts2

2 /(t1 + t2 + 1)
(x1 + ts1

1 )(x2 + ts2
2 )

dt1
t1

∧
dt2
t2

)

=

=
1

s1s2

∑

�
s1
1 =−x1,�

s2
2 =−x2

1
�1 + �2 + 1

.⋄
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Rational bivariate hypergeometric series

Question
When is a hypergeometric series in 2 variables rational?

Let ci = (ci
1, ci

2) and dj = (dj
1, dj

2) for i = 1, . . . , r; j = 1, . . . , s be
vectors in ℕ2. When is the series

∑

m∈ℕ2

∏r
i=1(c

i
1m1 + ci

2m2)!
∏s

j=1(d
j
1m1 + dj

2m2)!
xm1

1 xm2
2

the Taylor expansion of a rational function?
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Rational bivariate hypergeometric series

Answer
Theorem:

Let ci = (ci
1, ci

2) and dj = (dj
1, dj

2) for i = 1, . . . , r; j = 1, . . . , s be
vectors in ℕ2 (with

∑

ci =
∑

dj).

The series
∑

m∈ℕ2

∏r
i=1(c

i
1m1+ci

2m2)!
∏s

j=1(d
j
1m1+dj

2m2)!
xm1

1 xm2
2 is the Taylor expansion of

a rational function if and only if it is of the form f(s1,s2)(x).
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Gessell and Xin´s example of a rational bivariate
hypergeometric series

What if the cone is not the first orthant?

We had

GX(x, y) =
1 − xy

1 − xy2 − 3xy − x2y
=

∑

(

m + n
2m − n

)

xmyn,

where we are summing over the lattice points in the (pointed) non
unimodular convex cone ℝ≥0(1, 2) + ℝ≥0(2, 1).

Calling m1 = 2m − n,m2 = 2n − m (so that m = 2m1+m2
3 , n = m1+2m2

3 ):

1−xy
1−xy2−3xy−x2y =

∑

(m1,m2)∈L∩ℕ2
(m1+m2)!

m1!m2!
um1

1 um2
2 ,

where L = ℤ(1, 2) + ℤ(2, 1) = {(m1,m2) ∈ ℤ2 : m1 ≡ m2 mod 3} and
u3

1 = x2y, u3
2 = xy2.

The shape of the non zero coefficients is the expected, but the sum is
over a sublattice.
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The general result

Data

Suppose we are given linear functionals
ℓi(m1,m2) := ⟨bi, (m1,m2)⟩+ ki , i = 1, . . . , n,

where bi ∈ ℤ2∖{0}, ki ∈ ℤ and
∑n

i=1 bi = 0.

Take C a rational convex cone. The bivariate series:

�(x1, x2) =
∑

m∈C∩ℤ2

∏

ℓi(m)<0 (−1)ℓi(m) (−ℓi(m)− 1)!
∏

ℓj(m)>0 ℓj(m)!
xm1

1 xm2
2 . (10)

is called a Horn series.

The coefficients cm of � satisfy hypergeometric recurrences: for j = 1, 2,
and any m ∈ C ∩ ℤ2 such that m + ej also lies in C:

cm+ej

cm
=

∏

bij<0

∏−bij+1
l=0 ℓi(m)− l

∏

bij>0

∏bij

l=1 ℓi(m) + l
.
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The general result

Theorem
[Cattani, D.-, R. Villegas ’09]
If the Horn series �(x1, x2) is a rational function then: either

(i) n = 2r is even and, after reordering we may assume:

b1 + br+1 = ⋅ ⋅ ⋅ = br + b2r = 0, or (11)

(ii) B consists of n = 2r + 3 vectors and, after reordering, we may
assume that b1, . . . , b2r satisfy (11) and b2r+1 = s1�1, b2r+2 = s2�2,
b2r+3 = −b2r+1 − b2r+2, where �1, �2 are the primitive, integral,
inward-pointing normals of C and s1, s2 are positive integers.

Moreover, � can be expressed as a residue.
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Gessell and Xin´s example as a residue

�(x) = GX(−x) =
∑

m∈C∩ℤ2(−1)m1+m2
( m1+m2

2m1−m2

)

xm1
1 xm2

2 is a Horn series.

We read the lattice vectors b1 = (−1,−1), b2 = (−1, 2), b3 = (2,−1), and
we enlarge them to a configuration B by adding the vectors b4 = (1, 0)
and b5 = (−1, 0).

B is the Gale dual of the configuration A:

A =

⎛

⎝

1 1 1 0 0
0 0 0 1 1
0 1 2 0 3

⎞

⎠

and �(x) is the dehomogenization of a toric residue associated to
f1 = z1 + z2t + z3t2, f2 = z4 + z5t3.

In inhomogeneous coordinates we have the not so nice expression:

�(x) =
∑

�3=−x2/x1

Res�

(

x2t/(x2 + x2t − t2)

x2 + x1t3
dt

)

,
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Outline of the proof

A key lemma about Laurent expansions of rational functions + a
nice ingredient: the diagonals of a rational bivariate power series
define classical hypergeometric algebraic univariate functions.
[Polya ’22, Furstenberg ’67, Safonov ’00].

Number theoretic + monodromy ingredients: we use Theorem M
below to reduce to the algebraic hyperg. functions classified by
[Beukers-Heckmann ’89], [F. R. Villegas ’03, Bober ’08]

Many previous results on A-hypergeometric functions, allow us to
analyze the possible Laurent expansions of rational
hypergeometric solutions and to construct rational solutions using
toric residues. [Saito-Sturmfels-Takayama ´99; Cattani, D.-
Sturmfels ’01, 02; Cattani - D. ´04] .
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Diagonals of bivariate series

Given a bivariate power series

f (x1, x2) :=
∑

n,m≥0

am,nxm
1 xn

2 (12)

and � = (�1, �2) ∈ ℤ2
>0, with gcd(�1, �2) = 1, we define the �-diagonal of

f as:
f�(t) :=

∑

r≥0

a�1r,�2r tr . (13)

Polya ’22, Furstenberg ’67, Safonov ’00

If the series defines a rational function, then for every
� = (�1, �2) ∈ ℤ2

>0, with gcd(�1, �2) = 1, the �-diagonal f�(t) is algebraic.
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Laurent series of rational functions

Let p, q ∈ ℂ[x1, x2] coprime, f = p/q, N(q) ⊂ ℝ2 the Newton
polytope of q, v0 be a vertex of N(q), v1, v2 the adjacent vertices,
indexed counterclockwise.

Hence, N(q) ⊂ v0 + ℝ>0 ⋅ (v1 − v0) + ℝ>0 ⋅ (v2 − v0).

So, f (x) has a convergent Laurent series expansion with support
contained in xw + C for suitable w ∈ ℤ2 [GKZ], where C is the cone

C = ℝ≥0 (v1 − v0) + ℝ≥0 (v2 − v0).

Key Lemma

The support of the series is not contained in any subcone of the form
xw′

+ C′, with C′ is properly contained in C.
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Algebraic hypergeometric functions in one variable

Let v(z) :=
∑∞

n=0

∏r
i=1 (pi n)!

∏s
j=1 (qj n)! zn,

∑r
i=1 pi =

∑s
j=1 qj.

Using Beukers-Heckman ’89 it was shown by FRV ’03 that v defines an
algebraic function if and only the height d := s − r, equals 1 and the
coefficients An are integral for every n ∈ ℕ.

BH gave an explicit classification of all algebraic univariate
hypergeometric series, from which [FRV, Bober] classified all integral
factorial ratio sequences of height 1.
Assume that gcd(p1, . . . , pr, q1, . . . , qr+1) = 1. Then there exist
three infinite families for An:

1. ((a+b) n)!
(a n)! (b n)! , gcd(a, b) = 1,

2. (2(a+b) n)! (b n)!
((a+b) n)! (2b n)! (a n)! , gcd(a, b) = 1,

3. (2a n)! (2b n)!
(a n)! (b n)! ((a+b) n)! , gcd(a, b) = 1,

and 52 sporadic cases.
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Theorem M

In our context, (dehomogenized) series of the form
u(z) =

∑∞
n=0

∏r
i=1 (pi n+ki)!∏s

j=1 (qj n)! zn, ki ∈ ℕ occur (with
∑r

i=1 pi =
∑s

j=1 qj).

Calling An =
∏r

i=1 (pi n)!
∏s

j=1 (qj n)! , the coefficients of u equal h(n)An, with h a

polynomial.

Theorem
u(z) :=

∑

n≥0 h(n)An zn, v(z) :=
∑

n≥0 An zn,

(i) The series u(z) is algebraic if and only if v(z) is algebraic.
(ii) If u is rational then An = 1 for all n and v(z) = 1

1−z .

Proof uses monodromy as well as number theoretic arguments.
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So far, so good

. . . but how we figured out the statement of the general result and how
to guess the corresponding statement in dimensions 3 and higher?
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A-hypergeometric systems

Following [Gel′fand, Kapranov and Zelevinsky ’87,’89,’90] we associate
to a matrix A ∈ ℤd×n and a vector � ∈ ℂd a left ideal in the Weyl algebra
in n variables:

The A-hypergeometric system with parameter � is the left ideal HA(�)
in the Weyl algebra Dn generated by the toric operators ∂u − ∂v, for
all u, v ∈ ℕn such that Au = Av, and the Euler operators

∑n
j=1 aijzj∂j − �i

for i = 1, . . . , d.

Note that the binomial operators generate the whole toric ideal IA.

The Euler operators impose A-homogeneity to the solutions

The toric operators impose recurrences on the coefficients of (Puiseux)
series solutions.
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Gauss functions, revisited GKZ style

Consider the configuration in ℝ3

A =

⎛

⎝

1 1 1 1
0 1 1 0
0 1 0 1

⎞

⎠ .

kerℤ(A) = ⟨(1, 1,−1,−1)⟩ (1, 1,−1,−1) = (1, 1, 0, 0)− (0, 0, 1, 1)

The following GKZ-hypergeometric system of equations in four
variables x1, x2, x3, x4 is a nice encoding for Gauss equation in one
variable:

⎧





⎨





⎩

(∂1∂2 − ∂3∂4) (') = 0
(x1∂1 + x2∂2 + x3∂3 + x4∂4) (') = �1'

(x2∂2 + x3∂3) (') = �2'
(x2∂2 + x4∂4) (') = �3'
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Gauss functions, revisited GKZ style
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



⎨




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(x1∂1 + x2∂2 + x3∂3 + x4∂4) (') = �1'

(x2∂2 + x3∂3) (') = �2'
(x2∂2 + x4∂4) (') = �3'

(14)

Given any (�1, �2, �3) and v ∈ ℂn such that A ⋅ v = (�1, �2, �3) and
v1 = 0, any solution ' of (14) can be written as

'(x) = xv f

(

x1x2

x3x4

)

,

where f (z) satisfies Gauss equation with

� = v2 , � = v3 , 
 = v4 + 1.
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A-hypergeometric systems

Some features

A-hypergeometric systems are homogeneous versions of classical
hypergeometric systems in n − d variables (d = rank(A)).

Combinatorially defined in terms of configurations.

Closely related to toric geometry.

One may use algorithmic and computational techniques [Saito,
Sturmfels, Takayama ’99].

HA(�) is always holonomic and it has regular singularities iff A is regular
[GKZ, Adolphson, Hotta, Schulze–Walther]

The singular locus of the hypergeometric Dn-module Dn/HA(�) equals
the zero locus of the principal A-determinant EA, whose irreducible
factors are the sparse discriminants DA′ corresponding to the facial
subsets A′ of A [GKZ] including DA.
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Theorems/Conjectures about A-hypergeometric
systems

GKZ-definition of multivariate hypergeometric functions gives a combinatorial
meaning to parameters and a geometric meaning to solutions.

Rational A-hypergeometric functions

We studied the constraints imposed on a regular A by the existence of
stable rational A-hypergeometric functions; essentially, functions with
singularities along the discriminant locus DA.

We proved that “general” configurations A do NOT admit such rational
functions [Cattani–D.–Sturmfels ’01] and gave a conjectural
characterization of the configurations and of the shape of the rational
functions in terms of essential Cayley configurations and toric residues.

All codimension 1 configurations [CDS ’01], dimension 1
[Cattani–D’Andrea–D. ’99] and 2 [CDS ’01], Lawrence configurations
[CDS ’02], fourfolds in ℙ7 [Cattani–D. ’04], codimension 2 [CDRV ’09].
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Cayley configurations

Definition

A configuration A ⊂ ℤd is said to be a Cayley configuration if there
exist vector configurations A1, . . . ,Ak+1 in ℤr such that –up to
affine equivalence–

A = {e1}× A1 ∪ ⋅ ⋅ ⋅ ∪ {ek+1}×Ak+1 ⊂ ℤk+1 × ℤr, (15)

where e1, . . . , ek+1 is the standard basis of ℤk+1.

A Cayley configuration is a Lawrence configuration if all the
configurations Ai consist of exactly two points.
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Cayley configurations

Definition
A Cayley configuration is essential if k = r and the Minkowski sum
∑

i∈I Ai has affine dimension at least ∣I∣ for every proper subset I of
{1, . . . , r + 1}.

For a codimension-two essential Cayley configuration A, r of the
configurations Ai, say A1, . . . ,Ar, must consist of two vectors and the
remaining one, Ar+1, must consist of three vectors.

To an essential Cayley configuration we associate a family of r + 1
generic polynomials in r variables with supports Ai, such that any r of
them intersect in a positive number of points. Adding local residues over
this points gives a rational function!
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Summarizing

Our statement of bivariate hypergeometric series is the translation of
the general combinatorial structure on the A-side (which also provides
statements for the generalization to any number of variables)

The study of A-hypergeometric systems provides a general framework
under which we can treat many systems that had been studied
separately in the literature.

Questions
Describe all algebraic Laurent series solutions for Cayley
configurations (in progress).

How to prove the conjectures beyond dimension/codimension
two? There exists a characterization of normal configurations A for
which all solutions are algebraic ([Beukers ’10]), certainly for non
integer parameter vectors �. New techniques are needed.
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The End

Thank you for your attention!
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