Hypergeometric series with algebro-geometric dressing

Alicia Dickenstein

Universidad de Buenos Aires

FPSAC 2010, 08/05/10
Based on joint work:

The structure of bivariate rational hypergeometric functions (with Eduardo Cattani and Fernando Rodríguez Villegas) arXiv:0907.0790, to appear: IMRN.

Based on joint work:

The structure of bivariate rational hypergeometric functions (with Eduardo Cattani and Fernando Rodríguez Villegas) arXiv:0907.0790, to appear: IMRN.

Based on joint work:

The structure of bivariate rational hypergeometric functions (with Eduardo Cattani and Fernando Rodríguez Villegas) arXiv:0907.0790, to appear: IMRN.

The structure of bivariate rational hypergeometric functions (with Eduardo Cattani and Fernando Rodríguez Villegas) arXiv:0907.0790, to appear: IMRN.

Aim and plan of the talk

Aim: Show two sample results on bivariate hypergeometric series/recurrences with inspiration/proof driven by algebraic geometry.

1. *First problem:* Solutions to hypergeometric recurrences in \mathbb{Z}^2.
3. *Definitions/properties concerning A-hypergeometric systems and toric residues.*
Aim and plan of the talk

Aim: Show two sample results on bivariate hypergeometric series/recurrences with inspiration/proof driven by algebraic geometry.

1. First problem: Solutions to hypergeometric recurrences in \mathbb{Z}^2.
3. Definitions/properties concerning A-hypergeometric systems and toric residues.
Aim and plan of the talk

Aim: Show two sample results on bivariate hypergeometric series/recurrences with inspiration/proof driven by algebraic geometry.

1. First problem: Solutions to hypergeometric recurrences in \mathbb{Z}^2.
3. Definitions/properties concerning A-hypergeometric systems and toric residues.
Aim and plan of the talk

Aim: Show two sample results on bivariate hypergeometric series/recurrences with inspiration/proof driven by algebraic geometry.

1. **First problem:** Solutions to hypergeometric recurrences in \mathbb{Z}^2.
2. **Second problem:** Characterize hypergeometric rational series in 2 variables.
3. **Definitions/properties concerning A-hypergeometric systems and toric residues.**
Aim and plan of the talk

Aim: Show two sample results on bivariate hypergeometric series/recurrences with inspiration/proof driven by algebraic geometry.

1. First problem: Solutions to hypergeometric recurrences in \mathbb{Z}^2.
3. Definitions/properties concerning A-hypergeometric systems and toric residues.
Solutions to hypergeometric recurrences

\[A_n := \frac{(\alpha)_n(\beta)_n}{(\gamma)_n n!}, \quad F(\alpha, \beta, \gamma; x) = \sum_{n \geq 0} A_n x^n. \]

\[(c)_n = c(c + 1) \ldots (c + n - 1), \quad (1)_n = n!, \quad \text{Pochhammer symbol}\]

Key equivalence

The coefficients \(A_n \) satisfy the following recurrence:

\[(1 + n)(\gamma + n)A_{n+1} - (\alpha + n)(\beta + n)A_n = 0 \quad (1)\]

(1) is equivalent to the fact that \(F(\alpha, \beta, \gamma; x) \) satisfies Gauss differential equation (Kummer, Riemann):

\[[\Theta(\Theta + \gamma - 1) - x(\Theta + \alpha)(\Theta + \beta)](F) = 0, \quad \Theta = x \frac{d}{dx} \]
Solutions to hypergeometric recurrences

\[A_n := \frac{(\alpha)_n(\beta)_n}{(\gamma)_nn!}, \quad F(\alpha, \beta, \gamma; x) = \sum_{n \geq 0} A_n x^n. \]

\[(c)_n = c(c + 1) \ldots (c + n - 1), \quad (1)_n = n!, \quad \text{Pochammer symbol}\]

Key equivalence

The coefficients \(A_n \) satisfy the following recurrence:

\[(1 + n)(\gamma + n)A_{n+1} - (\alpha + n)(\beta + n)A_n = 0\] \hspace{1cm} (1)

(1) is equivalent to the fact that \(F(\alpha, \beta, \gamma; x) \) satisfies Gauss differential equation (Kummer, Riemann):

\[[(\Theta(\Theta + \gamma - 1) - x(\Theta + \alpha)(\Theta + \beta)](F) = 0, \quad \Theta = x \frac{d}{dx} \]
Solutions to hypergeometric recurrences

\[A_n := \frac{(\alpha)_n(\beta)_n}{(\gamma)_nn!}, \quad F(\alpha, \beta, \gamma; x) = \sum_{n \geq 0} A_n x^n. \]

\[(c)_n = c(c+1) \ldots (c+n-1), \quad (1)_n = n!, \quad \text{Pochhammer symbol} \]

Key equivalence

The coefficients \(A_n \) satisfy the following recurrence:

\[(1+n)(\gamma+n)A_{n+1} - (\alpha+n)(\beta+n)A_n = 0 \quad (1) \]

So: \(A_{n+1}/A_n \) is the **rational** function of \(n \): \((\alpha+n)(\beta+n)/(1+n)(\gamma+n) \).

(1) is equivalent to the fact that \(F(\alpha, \beta, \gamma; x) \) satisfies Gauss differential equation (Kummer, Riemann):

\[[\Theta(\Theta + \gamma - 1) - x(\Theta + \alpha)(\Theta + \beta)](F) = 0, \quad \Theta = x \frac{d}{dx}. \]
Solutions to hypergeometric recurrences

\[A_n := \frac{(\alpha)_n(\beta)_n}{(\gamma)_nn!}, \quad F(\alpha, \beta, \gamma; x) = \sum_{n \geq 0} A_n x^n. \]

\[(c)_n = c(c + 1) \ldots (c + n - 1), \ (1)_n = n!, \quad \text{Pochhammer symbol}\]

Key equivalence

The coefficients \(A_n\) satisfy the following recurrence:

\[(1 + n)(\gamma + n)A_{n+1} - (\alpha + n)(\beta + n)A_n = 0 \quad (1)\]

(1) is equivalent to the fact that \(F(\alpha, \beta, \gamma; x)\) satisfies Gauss differential equation (Kummer, Riemann):

\[[\Theta(\Theta + \gamma - 1) - x(\Theta + \alpha)(\Theta + \beta)](F) = 0, \quad \Theta = x \frac{d}{dx} \]
Solutions to hypergeometric recurrences

\[A_n := \frac{(\alpha)_n (\beta)_n}{(\gamma)_n n!}, \quad \gamma \notin \mathbb{Z}_{<0}, \quad F(\alpha, \beta, \gamma; x) = \sum_{n \geq 0} A_n x^n. \]

Key equivalence

If we define \(A_n = 0 \) for all \(n \in \mathbb{Z}_{<0} \), the coefficients \(A_n \) satisfy the recurrence:

\[(1 + n)(\gamma + n)A_{n+1} - (\alpha + n)(\beta + n)A_n = 0, \quad \text{for all } n \in \mathbb{Z} \quad (2) \]

(2) is equivalent to the fact that \(F(\alpha, \beta, \gamma; x) \) satisfies Gauss differential equation:

\[[\Theta(\Theta + \gamma - 1) - x(\Theta + \alpha)(\Theta + \beta)](F) = 0, \quad \Theta = x \frac{d}{dx} \]
Solutions to hypergeometric recurrences

\[A_n := \frac{(\alpha)_n(\beta)_n}{(\gamma)_nn!}, \quad \gamma \notin \mathbb{Z}_{<0}, \quad F(\alpha, \beta, \gamma; x) = \sum_{n \geq 0} A_n x^n. \]

Key equivalence

If we define \(A_n = 0 \) for all \(n \in \mathbb{Z}_{<0} \), the coefficients \(A_n \) satisfy the recurrence:

\[(1 + n)(\gamma + n)A_{n+1} - (\alpha + n)(\beta + n)A_n = 0, \quad \text{for all } n \in \mathbb{Z} \quad (2)\]

(2) is equivalent to the fact that \(F(\alpha, \beta, \gamma; x) \) satisfies Gauss differential equation:

\[[\Theta(\Theta + \gamma - 1) - x(\Theta + \alpha)(\Theta + \beta)](F) = 0, \quad \Theta = x \frac{d}{dx} \]
Solutions to hypergeometric recurrences

\[A_n := \frac{(\alpha)_n(\beta)_n}{(\gamma)_nn!}, \quad \gamma \notin \mathbb{Z}_{<0}, \quad F(\alpha, \beta, \gamma; x) = \sum_{n \geq 0} A_n x^n. \]

Key equivalence

If we define \(A_n = 0 \) for all \(n \in \mathbb{Z}_{<0} \), the coefficients \(A_n \) satisfy the recurrence:

\[
(1 + n)(\gamma + n)A_{n+1} - (\alpha + n)(\beta + n)A_n = 0, \quad \text{for all } n \in \mathbb{Z} \quad (2)
\]

(2) is equivalent to the fact that \(F(\alpha, \beta, \gamma; x) \) satisfies Gauss differential equation:

\[
[\Theta(\Theta + \gamma - 1) - x(\Theta + \alpha)(\Theta + \beta)](F) = 0, \quad \Theta = x \frac{d}{dx}
\]
Solutions to hypergeometric recurrences

\[A_n := \frac{(\alpha)_n(\beta)_n}{(\gamma)_nn!}, \quad \gamma \notin \mathbb{Z}_{<0}, \quad F(\alpha, \beta, \gamma; x) = \sum_{n \geq 0} A_n x^n. \]

Key equivalence

If we define \(A_n = 0 \) for all \(n \in \mathbb{Z}_{<0} \), the coefficients \(A_n \) satisfy the recurrence:

\[(1 + n)(\gamma + n)A_{n+1} - (\alpha + n)(\beta + n)A_n = 0, \quad \text{for all } n \in \mathbb{Z} \quad (2) \]

(2) is equivalent to the fact that \(F(\alpha, \beta, \gamma; x) \) satisfies Gauss differential equation:

\[[\Theta(\Theta + \gamma - 1) - x(\Theta + \alpha)(\Theta + \beta)](F) = 0, \quad \Theta = x \frac{d}{dx} \]
Solutions to hypergeometric recurrences

\[B_n := \frac{(\alpha)_n(\beta)_n}{(\gamma)_n(\delta)_n}, \quad \gamma, \delta \notin \mathbb{Z}_{<0}, \quad G(\alpha, \beta, \gamma, \delta; x) = \sum_{n \geq 0} B_n x^n. \]

Caveat

\[(\delta + n)(\gamma + n)B_{n+1} - (\alpha + n)(\beta + n)B_n = 0, \quad \text{for all } n \in \mathbb{N}. \quad (3)\]

but \(G(\alpha, \beta, \gamma; x)\) does not satisfy the differential equation:

\[[(\Theta + \delta - 1)(\Theta + \gamma - 1) - x(\Theta + \alpha)(\Theta + \beta)](G) = 0. \]
Solutions to hypergeometric recurrences

\[B_n := \frac{(\alpha)_n(\beta)_n}{(\gamma)_n(\delta)_n}, \quad \gamma, \delta \notin \mathbb{Z}_{<0}, \quad G(\alpha, \beta, \gamma, \delta; x) = \sum_{n \geq 0} B_n x^n. \]

Caveat

\[(\delta + n)(\gamma + n)B_{n+1} - (\alpha + n)(\beta + n)B_n = 0, \quad \text{for all } n \in \mathbb{N}. \quad (3)\]

but \(G(\alpha, \beta, \gamma; x) \) does not satisfy the differential equation:

\[[(\Theta + \delta - 1)(\Theta + \gamma - 1) - x(\Theta + \alpha)(\Theta + \beta)](G) = 0. \]
Solutions to hypergeometric recurrences

\[B_n := \frac{(\alpha)_n(\beta)_n}{(\gamma)_n(\delta)_n}, \quad \gamma, \delta \notin \mathbb{Z}_{<0}, \quad G(\alpha, \beta, \gamma, \delta; x) = \sum_{n \geq 0} B_n x^n. \]

Caveat

\[(\delta + n)(\gamma + n)B_{n+1} - (\alpha + n)(\beta + n)B_n = 0, \quad \text{for all } n \in \mathbb{N}. \quad (3)\]

but \(G(\alpha, \beta, \gamma; x) \) does not satisfy the differential equation:

\[[(\Theta + \delta - 1)(\Theta + \gamma - 1) - x(\Theta + \alpha)(\Theta + \beta)](G) = 0. \]
Solutions to hypergeometric recurrences

\[B_n := \frac{(\alpha)_n (\beta)_n}{(\gamma)_n (\delta)_n}, \quad \gamma, \delta \notin \mathbb{Z}_{<0}, \quad G(\alpha, \beta, \gamma, \delta; x) = \sum_{n \geq 0} B_n x^n. \]

The normalization hides the initial condition

If we define \(B_n = 0 \) for all \(n \in \mathbb{Z}_{<0} \), then

\[(n+1)(\delta + n)(\gamma + n)B_{n+1} - (n+1)(\alpha + n)(\beta + n)B_n = 0, \quad \text{for all } n \in \mathbb{Z}. \tag{4}\]

\(G(\alpha, \beta, \gamma; x) \) does satisfy the differential equation:

\[[\Theta(\Theta + \delta - 1)(\Theta + \gamma - 1) - x(\Theta + 1)(\Theta + \alpha)(\Theta + \beta)](G) = 0. \]
Solutions to hypergeometric recurrences

\[B_n := \frac{(\alpha)_n(\beta)_n}{(\gamma)_n(\delta)_n}, \quad \gamma, \delta \notin \mathbb{Z}_{<0}, \quad G(\alpha, \beta, \gamma, \delta; x) = \sum_{n \geq 0} B_n x^n. \]

The normalization hides the initial condition

If we define \(B_n = 0 \) for all \(n \in \mathbb{Z}_{<0} \), then

\[(n+1)(\delta + n)(\gamma + n)B_{n+1} - (n+1)(\alpha + n)(\beta + n)B_n = 0, \quad \text{for all } n \in \mathbb{Z}. \] (4)

\(G(\alpha, \beta, \gamma; x) \) does satisfy the differential equation:

\[
[\Theta(\Theta + \delta - 1)(\Theta + \gamma - 1) - x(\Theta + 1)(\Theta + \alpha)(\Theta + \beta)](G) = 0.
\]
Solutions to hypergeometric recurrences

\[B_n := \frac{(\alpha)_n(\beta)_n}{(\gamma)_n(\delta)_n}, \quad \gamma, \delta \notin \mathbb{Z}_{<0}, \quad G(\alpha, \beta, \gamma, \delta; x) = \sum_{n \geq 0} B_n x^n. \]

The normalization hides the initial condition

If we define \(B_n = 0 \) for all \(n \in \mathbb{Z}_{<0} \), then

\[
(n+1)(\delta + n)(\gamma + n)B_{n+1} - (n+1)(\alpha + n)(\beta + n)B_n = 0, \quad \text{for all } n \in \mathbb{Z}.
\]

(4)

\(G(\alpha, \beta, \gamma; x) \) does satisfy the differential equation:

\[
[\Theta(\Theta + \delta - 1)(\Theta + \gamma - 1) - x(\Theta + 1)(\Theta + \alpha)(\Theta + \beta)](G) = 0.
\]
Let a_{mn}, $m, n \in \mathbb{N}$ such that there exist two rational functions $R_1(m, n)$, $R_2(m, n)$ expressible as \textit{products of (affine) linear functions} in (m, n), such that
\begin{align*}
\frac{a_{m+1,n}}{a_{mn}} &= R_1(m, n), \\
\frac{a_{m,n+1}}{a_{mn}} &= R_2(m, n)
\end{align*}
(5)
(with obvious \textit{compatibility} conditions).

Write
\begin{align*}
R_1(m, n) &= \frac{P_1(m, n)}{Q_1(m+1, n)}, \\
R_2(m, n) &= \frac{P_2(m, n)}{Q_2(m, n + 1)}.
\end{align*}
Naive generalization

Let a_{mn}, $m, n \in \mathbb{N}$ such that there exist two rational functions $R_1(m, n)$, $R_2(m, n)$ expressible as \textit{products of (affine) linear functions} in (m, n), such that

$$\frac{a_{m+1,n}}{a_{mn}} = R_1(m, n), \quad \frac{a_{m,n+1}}{a_{mn}} = R_2(m, n) \quad (5)$$

(with obvious \textit{compatibility} conditions).

Write

$$R_1(m, n) = \frac{P_1(m, n)}{Q_1(m+1, n)}, \quad R_2(m, n) = \frac{P_2(m, n)}{Q_2(m, n+1)}.$$
Naive generalization

Let a_{mn}, $m, n \in \mathbb{N}$ such that there exist two rational functions $R_1(m, n)$, $R_2(m, n)$ expressible as products of (affine) linear functions in (m, n), such that

$$\frac{a_{m+1,n}}{a_{mn}} = R_1(m, n), \quad \frac{a_{m,n+1}}{a_{mn}} = R_2(m, n)$$

(with obvious compatibility conditions).

Write

$$R_1(m, n) = \frac{P_1(m, n)}{Q_1(m + 1, n)}, \quad R_2(m, n) = \frac{P_2(m, n)}{Q_2(m, n + 1)}.$$
Hypergeometric recurrences in two variables

Naive generalization, suite

Consider the generating function $F(x_1, x_2) = \sum_{m,n \in \mathbb{N}} a_{mn} x_1^m x_2^n$ and the differential operators \((\theta_i = x_i \frac{\partial}{\partial x_i}) \):

\[
\Delta_1 = Q_1(\theta_1, \theta_2) - x_1 P_1(\theta_1, \theta_2) \quad \Delta_2 = Q_2(\theta_1, \theta_2) - x_2 P_2(\theta_1, \theta_2).
\]

Then, the recurrences (5) in the coefficients a_{mn} are equivalent to $\Delta_1(F) = \Delta_2(F) = 0$ if $Q_1(0, n) = Q_2(m, 0) = 0$ and in this case, if we extend the definition of a_{mn} by 0, the recurrences

\[
Q_1(m + 1, n)a_{m+1,n} - P_1(m, n) = Q_2(m, n + 1)a_{m,n+1} - P_2(m, n) = 0
\]

hold for all $(m, n) \in \mathbb{Z}^2$.
Consider the generating function $F(x_1, x_2) = \sum_{m,n\in\mathbb{N}} a_{mn} x_1^m x_2^n$ and the differential operators $(\theta_i = x_i \frac{\partial}{\partial x_i})$:

$$
\Delta_1 = Q_1(\theta_1, \theta_2) - x_1 P_1(\theta_1, \theta_2) \quad \Delta_2 = Q_2(\theta_1, \theta_2) - x_2 P_2(\theta_1, \theta_2).
$$

Then, the recurrences (5) in the coefficients a_{mn} are equivalent to $\Delta_1(F) = \Delta_2(F) = 0$ if $Q_1(0, n) = Q_2(m, 0) = 0$ and in this case, if we extend the definition of a_{mn} by 0, the recurrences

$$
Q_1(m + 1, n)a_{m+1,n} - P_1(m, n) = Q_2(m, n + 1)a_{m,n+1} - P_2(m, n) = 0
$$

hold for all $(m, n) \in \mathbb{Z}^2$.
Consider the generating function \(F(x_1, x_2) = \sum_{m,n \in \mathbb{N}} a_{mn} x_1^m x_2^n \) and the differential operators \((\theta_i = x_i \frac{\partial}{\partial x_i}):\)

\[
\Delta_1 = Q_1(\theta_1, \theta_2) - x_1 P_1(\theta_1, \theta_2) \quad \Delta_2 = Q_2(\theta_1, \theta_2) - x_2 P_2(\theta_1, \theta_2).
\]

Then, the recurrences (5) in the coefficients \(a_{mn} \) are equivalent to \(\Delta_1(F) = \Delta_2(F) = 0 \) if \(Q_1(0, n) = Q_2(m, 0) = 0 \) and in this case, if we extend the definition of \(a_{mn} \) by 0, the recurrences

\[
Q_1(m + 1, n)a_{m+1,n} - P_1(m, n) = Q_2(m, n + 1)a_{m,n+1} - P_2(m, n) = 0
\]

hold for all \((m, n) \in \mathbb{Z}^2\).
Hypergeometric recurrences in two variables

Naive generalization, suite

Consider the generating function $F(x_1, x_2) = \sum_{m,n \in \mathbb{N}} a_{mn} x_1^m x_2^n$ and the differential operators $(\theta_i = x_i \frac{\partial}{\partial x_i})$:

$$\Delta_1 = Q_1(\theta_1, \theta_2) - x_1 P_1(\theta_1, \theta_2) \quad \Delta_2 = Q_2(\theta_1, \theta_2) - x_2 P_2(\theta_1, \theta_2).$$

Then, the recurrences (5) in the coefficients a_{mn} are equivalent to $\Delta_1(F) = \Delta_2(F) = 0$ if $Q_1(0, n) = Q_2(m, 0) = 0$ and in this case, if we extend the definition of a_{mn} by 0, the recurrences

$$Q_1(m + 1, n)a_{m+1,n} - P_1(m, n) = Q_2(m, n + 1)a_{m,n+1} - P_2(m, n) = 0$$

hold for all $(m, n) \in \mathbb{Z}^2$.
Hypergeometric recurrences in two variables

Naive generalization, suite

Consider the generating function \(F(x_1, x_2) = \sum_{m,n \in \mathbb{N}} a_{mn} x_1^m x_2^n \) and the differential operators \(\left(\theta_i = x_i \frac{\partial}{\partial x_i} \right) \):

\[
\Delta_1 = Q_1(\theta_1, \theta_2) - x_1 P_1(\theta_1, \theta_2) \quad \Delta_2 = Q_2(\theta_1, \theta_2) - x_2 P_2(\theta_1, \theta_2).
\]

Then, the recurrences (5) in the coefficients \(a_{mn} \) are equivalent to \(\Delta_1(F) = \Delta_2(F) = 0 \) if \(Q_1(0, n) = Q_2(m, 0) = 0 \) and in this case, if we extend the definition of \(a_{mn} \) by 0, the recurrences

\[
Q_1(m + 1, n)a_{m+1,n} - P_1(m, n) = Q_2(m, n + 1)a_{m,n+1} - P_2(m, n) = 0
\]

hold for all \((m, n) \in \mathbb{Z}^2 \).
Dissections

A subdivision of a regular \(n\)-gon into \((m + 1)\) cells by means of nonintersecting diagonals is called a dissection.

How many dissections are there?

\[
d_{m,n} = \frac{1}{m+1} \binom{n-3}{m} \binom{m+n-1}{m}; \quad 0 \leq m \leq n - 3.
\]

So, the generating function is naturally defined for \((m, n)\) belonging to the lattice points in the rational cone \(\{(a, b)/0 \leq a \leq b - 3\}\) (and 0 outside).
Two examples from combinatorics

Dissections

A subdivision of a regular \(n\)-gon into \((m + 1)\) cells by means of nonintersecting diagonals is called a dissection.

How many dissections are there?

\[
d_{m,n} = \frac{1}{m+1} \binom{n-3}{m} \binom{m+n-1}{m} ; \quad 0 \leq m \leq n - 3.
\]

So, the generating function is naturally defined for \((m, n)\) belonging to the lattice points in the rational cone \(\{(a, b)/0 \leq a \leq b - 3\}\) (and 0 outside).
Two examples from combinatorics

Dissections

A subdivision of a regular n-gon into $(m + 1)$ cells by means of nonintersecting diagonals is called a \textit{dissection}.

How many dissections are there?

\[
d_{m,n} = \frac{1}{m + 1} \binom{n - 3}{m} \binom{m + n - 1}{m}; \quad 0 \leq m \leq n - 3.
\]

So, the generating function is naturally defined for (m, n) belonging to the lattice points in the \textit{rational cone} \{(a, b)/0 \leq a \leq b - 3\} (and 0 outside).
Two examples from combinatorics

Dissections

A subdivision of a regular n-gon into $(m + 1)$ cells by means of nonintersecting diagonals is called a dissection.

How many dissections are there?

$$d_{m,n} = \frac{1}{m+1} \binom{n-3}{m} \binom{m+n-1}{m}; \quad 0 \leq m \leq n-3.$$

So, the generating function is naturally defined for (m, n) belonging to the lattice points in the rational cone $\{(a, b)/0 \leq a \leq b - 3\}$ (and 0 outside).
Two examples from combinatorics

[Example 9.2, Gessell and Xin, *The generating function of ternary trees and continued fractions*, EJC ’06]

\[GX(x, y) = \frac{1 - xy}{1 - xy^2 - 3xy - x^2y} = \sum_{m,n \geq 0} \binom{m+n}{2m-n} x^m y^n, \]

where \(\binom{a}{b} \) is defined as 0 if \(b < 0 \) or \(a - b < 0 \).

So we are summing over the lattice points in the convex rational cone \(\{(a, b) \in \mathbb{R}^2 : 2a - b \geq 0, 2b - a \geq 0\} = \mathbb{R}_{\geq 0}(1, 2) + \mathbb{R}_{\geq 0}(2, 1) \). Or: the terms are defined over \(\mathbb{Z}^2 \) extending by 0 outside the cone.
Two examples from combinatorics

[Example 9.2, Gessell and Xin, *The generating function of ternary trees and continued fractions, EJC ’06*]

\[
GX(x, y) = \frac{1 - xy}{1 - xy^2 - 3xy - x^2y} = \sum_{m,n \geq 0} \binom{m + n}{2m - n} x^m y^n,
\]

where \(\binom{a}{b}\) is defined as 0 if \(b < 0\) or \(a - b < 0\).

So we are summing over the lattice points in the convex rational cone \(\{(a, b) \in \mathbb{R}^2 : 2a - b \geq 0, 2b - a \geq 0\} = \mathbb{R}_{\geq 0}(1, 2) + \mathbb{R}_{\geq 0}(2, 1)\). Or: the terms are defined over \(\mathbb{Z}^2\) extending by 0 outside the cone.
Two examples from combinatorics

[Example 9.2, Gessell and Xin, The generating function of ternary trees and continued fractions, EJC ’06]

\[GX(x, y) = \frac{1 - xy}{1 - xy^2 - 3xy - x^2y} = \sum_{m,n \geq 0} \binom{m+n}{2m-n} x^m y^n , \]

where \(\binom{a}{b} \) is defined as 0 if \(b < 0 \) or \(a - b < 0 \).

So we are summing over the lattice points in the convex rational cone \(\{(a, b) \in \mathbb{R}^2 : 2a - b \geq 0, 2b - a \geq 0 \} = \mathbb{R}_{\geq 0}(1, 2) + \mathbb{R}_{\geq 0}(2, 1) \). Or: the terms are defined over \(\mathbb{Z}^2 \) extending by 0 outside the cone.
Data

Consider the hypergeometric terms $a_{m,n} = (-1)^n \frac{(2m-n+2)!}{n! m! (m-2n)!}$ for (m, n) integers with $m - 2n \geq 0, n \geq 0$, which satisfy the recurrences:

$$\frac{a_{m+1,n}}{a_{m,n}} = \frac{(2m - n + 4) (2m - n + 3)}{(m + 1) (m + 1 - 2n)} = \frac{P_1(m, n)}{Q_1(m + 1, n)}$$

$P_1(m, n) = (2m - n + 4) (2m - n + 3)$, $Q_1(m, n) = m (m - 2n)$

$$\frac{a_{m,n+1}}{a_{m,n}} = -\frac{(m - 2n) (m - 2n - 1)}{(2m - n + 2) (n + 1)} = \frac{P_2(m, n)}{Q_2(m, n + 1)}$$

$P_2(m, n) = -(m - 2n) (m - 2n - 1)$, $Q_2(m, n) = (2m - n + 3) n$
Our results through an example

Data

Consider the hypergeometric terms

\[a_{m,n} = (-1)^n \frac{(2m-n+2)!}{n! m! (m-2n)!} \]

for \((m, n)\) integers with \(m - 2n \geq 0, n \geq 0\), which satisfy the recurrences:

\[
\frac{a_{m+1,n}}{a_{m,n}} = \frac{(2m - n + 4) (2m - n + 3)}{(m + 1) (m + 1 - 2n)} = \frac{P_1(m, n)}{Q_1(m + 1, n)}
\]

\[P_1(m, n) = (2m - n + 4) (2m - n + 3), \quad Q_1(m, n) = m (m - 2n) \]

\[
\frac{a_{m,n+1}}{a_{m,n}} = -\frac{(m - 2n) (m - 2n - 1)}{(2m - n + 2) (n + 1)} = \frac{P_2(m, n)}{Q_2(m, n + 1)}
\]

\[P_2(m, n) = -(m - 2n) (m - 2n - 1), \quad Q_2(m, n) = (2m - n + 3) n \]
Our results through an example

Data

Consider the hypergeometric terms \(a_{m,n} = (-1)^n \frac{(2m-n+2)!}{n! m! (m-2n)!} \) for \((m, n)\) integers with \(m - 2n \geq 0, n \geq 0\), which satisfy the recurrences:

\[
\frac{a_{m+1,n}}{a_{m,n}} = \frac{(2m-n+4)(2m-n+3)}{(m+1)(m+1-2n)} = \frac{P_1(m,n)}{Q_1(m+1,n)}
\]

\[
P_1(m, n) = (2m-n+4)(2m-n+3), \quad Q_1(m, n) = m(m-2n)
\]

\[
\frac{a_{m,n+1}}{a_{m,n}} = -\frac{(m-2n)(m-2n-1)}{(2m-n+2)(n+1)} = \frac{P_2(m,n)}{Q_2(m,n+1)}
\]

\[
P_2(m, n) = -(m-2n)(m-2n-1), \quad Q_2(m, n) = (2m-n+3)n
\]
Our results through an example

Data

Consider the hypergeometric terms $a_{m,n} = \left(-1\right)^n \frac{(2m-n+2)!}{n! m! (m-2n)!}$ for (m, n) integers with $m - 2n \geq 0, n \geq 0$, which satisfy the recurrences:

$$
\frac{a_{m+1,n}}{a_{m,n}} = \frac{(2m-n+4) (2m-n+3)}{(m+1) (m+1-2n)} = \frac{P_1(m,n)}{Q_1(m+1,n)}
$$

$P_1(m,n) = (2m-n+4) (2m-n+3), \quad Q_1(m,n) = m (m-2n)$

$$
\frac{a_{m,n+1}}{a_{m,n}} = -\frac{(m-2n) (m-2n-1)}{(2m-n+2) (n+1)} = \frac{P_2(m,n)}{Q_2(m,n+1)}
$$

$P_2(m,n) = -(m-2n) (m-2n-1), \quad Q_2(m,n) = (2m-n+3) n$
Our results through an example

Data

Consider the hypergeometric terms

\[a_{m,n} = (-1)^n \frac{(2m-n+2)!}{n! \cdot m!(m-2n)!} \]

for \((m, n)\) integers with \(m - 2n \geq 0, n \geq 0\), which satisfy the recurrences:

\[
\frac{a_{m+1,n}}{a_{m,n}} = \frac{(2m - n + 4) (2m - n + 3)}{(m + 1) (m + 1 - 2n)} = \frac{P_1(m, n)}{Q_1(m + 1, n)}
\]

\[
P_1(m, n) = (2m - n + 4) (2m - n + 3), \quad Q_1(m, n) = m (m - 2n)
\]

\[
\frac{a_{m,n+1}}{a_{m,n}} = -\frac{(m - 2n) (m - 2n - 1)}{(2m - n + 2) (n + 1)} = \frac{P_2(m, n)}{Q_2(m, n + 1)}
\]

\[
P_2(m, n) = -(m - 2n) (m - 2n - 1), \quad Q_2(m, n) = (2m - n + 3) n
\]
Our results through an example

We have that the terms $t_{m,n} = a_{mn}$ for $m - 2n \geq 0, n \geq 0$ and $t_{(m,n)} = 0$ for any other $(m, n) \in \mathbb{Z}^2$, satisfy the recurrences:

$$Q_1(m+1,n)t_{m+1,n} - P_1(m,n)t_{m,n} = Q_2(m,n+1)t_{(m,n+1)} - P_2(m,n)t_{m,n} = 0.$$
(6)

Question

Which other terms $t_{m,n}, (m, n) \in \mathbb{Z}^2$ satisfy (6)?

Remark

When the linear forms in the polynomials P_i, Q_i defining the recurrences have generic constant terms, the solution is given by the Ore-Sato coefficients.
Our results through an example

We have that the terms \(t_{m,n} = a_{mn} \) for \(m - 2n \geq 0, n \geq 0 \) and \(t_{(m,n)} = 0 \) for any other \((m,n) \in \mathbb{Z}^2 \), satisfy the recurrences:

\[
Q_1(m+1,n)t_{m+1,n} - P_1(m,n)t_{m,n} = Q_2(m,n+1)t_{(m,n+1)} - P_2(m,n)t_{m,n} = 0.
\]

(6)

Question

Which other terms \(t_{m,n}, (m,n) \in \mathbb{Z}^2 \) satisfy (6)?

Remark

When the linear forms in the polynomials \(P_i, Q_i \) defining the recurrences have generic constant terms, the solution is given by the Ore-Sato coefficients.
Our results through an example

We have that the terms \(t_{m,n} = a_{mn} \) for \(m - 2n \geq 0, n \geq 0 \) and \(t_{(m,n)} = 0 \) for any other \((m, n) \in \mathbb{Z}^2 \), satisfy the recurrences:

\[
Q_1(m+1, n)t_{m+1,n} - P_1(m, n)t_{m,n} = Q_2(m, n+1)t_{(m,n+1)} - P_2(m, n)t_{m,n} = 0.
\]

(6)

Question

Which other terms \(t_{m,n}, (m, n) \in \mathbb{Z}^2 \) satisfy (6)?

Remark

When the linear forms in the polynomials \(P_i, Q_i \) defining the recurrences have generic constant terms, the solution is given by the Ore-Sato coefficients.
Our results through an example

Question

Which other terms \(t_{m,n}, (m, n) \in \mathbb{Z}^2 \) satisfy (6)?

Answer

There are three other solutions \(b_{mn}, c_{mn}, d_{mn} \) (up to linear combinations)
Our results through an example

Question

Which other terms \(t_{m,n}, (m, n) \in \mathbb{Z}^2 \) satisfy (6)?

Answer

There are three other solutions \(b_{mn}, c_{mn}, d_{mn} \) (up to linear combinations)
Our results through an example

Answer

There are four solutions $a_{mn}, b_{mn}, c_{mn}, d_{mn}$ (up to linear combinations), with generating series F_1, \ldots, F_4:

$$a_{m,n} = (-1)^n \frac{(2m-n+2)!}{n! m! (m-2n)!}, \quad F_1 = \sum_{m-2n \geq 0} \sum_{n \geq 0} a_{m,n} x_1^m x_2^n,$$

$$b_{m,n} = (-1)^m \frac{(2m-n-1)!}{n! m! (-2m+n+3)!}, \quad F_2 = \sum_{-2m+n \geq 3} \sum_{m \geq 0} b_{m,n} x_1^m x_2^n,$$

$$c_{m,n} = (-1)^{m+n} \frac{(-m-1)! (-n-1)!}{(m-2n)! (-2m+n-3)!}, \quad F_3 = \sum_{m-2n \geq 0} \sum_{-2m+n \geq 3} c_{m,n} x_1^m x_2^n,$$

$$d_{-2,-1} = 1, \quad F_4 = x_1^{-2} x_2^{-1}.$$

In all cases, $t_{mn} = 0$ outside the support of the series.
Pictorially
The generating functions F_i satisfy the differential equations:

\[
\Theta_1(\Theta_1 - 2\Theta_2) - x_1 (2\Theta_1 - \Theta_2 + 4)(2\Theta_1 - \Theta_2 + 3)(F) = 0,
\]

\[
\Theta_2(-2\Theta_1 + \Theta_2 - 3) - x_2 (2\Theta_2 - \Theta_1)(2\Theta_2 - \Theta_1 + 1)(F) = 0.
\]

Consider the system of binomial equations:

\[
q_1 = \partial_1^1 \partial_3^1 - \partial_2^2, \quad q_2 = \partial_2^1 \partial_4^1 - \partial_3^2
\]

in the commutative polynomial ring $\mathbb{C}[\partial_1, \ldots, \partial_4]$.

The zero set $q_1 = q_2 = 0$ has two irreducible components, one of degree 3 and multiplicity 1, which intersects $(\mathbb{C}^*)^4$ (it is the twisted cubic), and another component "at infinity": $\{\partial_2 = \partial_3 = 0\}$, of degree 1 and multiplicity $1 = \min\{2 \times 2, 1 \times 1\}$.
The generating functions F_i satisfy the differential equations:

\[
\Theta_1(\Theta_1 - 2\Theta_2) - x_1(2\Theta_1 - \Theta_2 + 4)(2\Theta_1 - \Theta_2 + 3)(F) = 0,
\]

\[
\Theta_2(-2\Theta_1 + \Theta_2 - 3) - x_2(2\Theta_2 - \Theta_1)(2\Theta_2 - \Theta_1 + 1)(F) = 0.
\]

Consider the system of binomial equations:

\[
q_1 = \partial_1^1 \partial_3^1 - \partial_2^2, \quad q_2 = \partial_2^1 \partial_4^1 - \partial_3^2
\]

in the commutative polynomial ring $\mathbb{C}[\partial_1, \ldots, \partial_4]$.

The zero set $q_1 = q_2 = 0$ has two irreducible components, one of degree 3 and multiplicity 1, which intersects $(\mathbb{C}^*)^4$ (it is the twisted cubic), and another component "at infinity": $\{\partial_2 = \partial_3 = 0\}$, of degree 1 and multiplicity 1 = $\min\{2 \times 2, 1 \times 1\}$.
The generating functions F_i satisfy the differential equations:

\[
\Theta_1(\Theta_1 - 2\Theta_2) - x_1(2\Theta_1 - \Theta_2 + 4)(2\Theta_1 - \Theta_2 + 3)(F) = 0,
\]
\[
\Theta_2(-2\Theta_1 + \Theta_2 - 3) - x_2(2\Theta_2 - \Theta_1)(2\Theta_2 - \Theta_1 + 1)(F) = 0.
\]

Consider the system of binomial equations:

\[
q_1 = \partial_1^1 \partial_3^1 - \partial_2^2, \quad q_2 = \partial_2^1 \partial_4^1 - \partial_3^2
\]

in the commutative polynomial ring $\mathbb{C}[\partial_1, \ldots, \partial_4]$.

The zero set $q_1 = q_2 = 0$ has two irreducible components, one of degree 3 and multiplicity 1, which intersects $(\mathbb{C}^*)^4$ (it is the twisted cubic), and another component “at infinity”: $\{\partial_2 = \partial_3 = 0\}$, of degree 1 and multiplicity $1 = \min\{2 \times 2, 1 \times 1\}$.
The generating functions F_i satisfy the differential equations:

$$
\Theta_1(\Theta_1 - 2\Theta_2) - x_1(2\Theta_1 - \Theta_2 + 4)(2\Theta_1 - \Theta_2 + 3)(F) = 0,
$$

$$
\Theta_2(-2\Theta_1 + \Theta_2 - 3) - x_2(2\Theta_2 - \Theta_1)(2\Theta_2 - \Theta_1 + 1)(F) = 0.
$$

Consider the system of binomial equations:

$$
q_1 = \partial_1^1 \partial_3^1 - \partial_2^2, \quad q_2 = \partial_2^1 \partial_4^1 - \partial_3^2
$$

in the commutative polynomial ring $\mathbb{C}[\partial_1, \ldots, \partial_4]$.

The zero set $q_1 = q_2 = 0$ has two irreducible components, one of degree 3 and multiplicity 1, which intersects $(\mathbb{C}^*)^4$ (it is the twisted cubic), and another component “at infinity”: $\{\partial_2 = \partial_3 = 0\}$, of degree 1 and multiplicity 1 = $\min\{2 \times 2, 1 \times 1\}$.
The generating functions F_i satisfy the \emph{differential} equations:

\[
\begin{align*}
\Theta_1(\Theta_1 - 2\Theta_2) - x_1(2\Theta_1 - \Theta_2 + 4) (2\Theta_1 - \Theta_2 + 3)](F) &= 0, \\
\Theta_2(-2\Theta_1 + \Theta_2 - 3) - x_2(2\Theta_2 - \Theta_1) (2\Theta_2 - \Theta_1 + 1)](F) &= 0.
\end{align*}
\]

Consider the system of \emph{binomial} equations:

\[
q_1 = \partial_1^1 \partial_3^1 - \partial_2^2, \quad q_2 = \partial_2^1 \partial_4^1 - \partial_3^2
\]

in the commutative polynomial ring $\mathbb{C}[\partial_1, \ldots, \partial_4]$.

The zero set $q_1 = q_2 = 0$ has \textbf{two irreducible components}, one of degree 3 and mutiplicity 1, which intersects $(\mathbb{C}^*)^4$ (it is the \textbf{twisted cubic}), and another component “\textbf{at infinity}”: \{$\partial_2 = \partial_3 = 0$\}, of degree 1 and mutiplicity $1 = \min\{2 \times 2, 1 \times 1\}$.

A. Dickenstein (U. Buenos Aires)
Hyp. series with AG dressing
FPSAC 2010, 08/05/10 17 / 46
The generating functions F_i satisfy the differential equations:

\[
\Theta_1(\Theta_1 - 2\Theta_2) - x_1(2\Theta_1 - \Theta_2 + 4)(2\Theta_1 - \Theta_2 + 3)(F) = 0,
\]

\[
\Theta_2(-2\Theta_1 + \Theta_2 - 3) - x_2(2\Theta_2 - \Theta_1)(2\Theta_2 - \Theta_1 + 1)(F) = 0.
\]

Consider the system of binomial equations:

\[
q_1 = \partial_1^1 \partial_3^1 - \partial_2^2, \quad q_2 = \partial_2^1 \partial_4^1 - \partial_3^2
\]

in the commutative polynomial ring $\mathbb{C}[\partial_1, \ldots, \partial_4]$.

The zero set $q_1 = q_2 = 0$ has two irreducible components, one of degree 3 and multiplicity 1, which intersects $(\mathbb{C}^*)^4$ (it is the twisted cubic), and another component “at infinity”: $\{\partial_2 = \partial_3 = 0\}$, of degree 1 and multiplicity $1 = \min\{2 \times 2, 1 \times 1\}$.
Consider the system of *binomial* equations:

\[q_1 = \partial_1^1 \partial_3^1 - \partial_2^2, \quad q_2 = \partial_2^1 \partial_4^1 - \partial_3^2 \]

in the commutative polynomial ring \(\mathbb{C}[\partial_1, \ldots, \partial_4] \).

The zero set \(q_1 = q_2 = 0 \) has two irreducible components, one of degree 3 and multiplicity 1, which intersects \((\mathbb{C}^*)^4\), and another component “at infinity”: \(\{ \partial_2 = \partial_3 = 0 \} \), of degree 1 and multiplicity 1 = \(\min\{2 \times 2, 1 \times 1\} \).

This multiplicity equals the intersection multiplicity at \((0,0)\) of the system of two binomials in two variables:

\[p_1 = \partial_3^a - \partial_2^b, \quad p_2 = \partial_2^c - \partial_3^d, \quad a = 1, b = 2, c = 1, d = 2 \]

The multiplicity of this only (non homogeneous) component at infinity is equal to the dimension of the space of solutions of the recurrences with finite support.
Consider the system of *binomial* equations:

\[
q_1 = \partial_1^1 \partial_3^1 - \partial_2^2, \quad q_2 = \partial_2^1 \partial_4^1 - \partial_3^2
\]

in the commutative polynomial ring \(\mathbb{C}[\partial_1, \ldots, \partial_4]\).

The zero set \(q_1 = q_2 = 0\) has two irreducible components, one of degree 3 and multiplicity 1, which intersects \((\mathbb{C}^*)^4\), and another component “at infinity”: \(\{\partial_2 = \partial_3 = 0\}\), of degree 1 and multiplicity 1 = \(\min\{2 \times 2, 1 \times 1\}\).

This multiplicity equals the intersection multiplicity at \((0, 0)\) of the system of two binomials in two variables:

\[
p_1 = \partial_3^a - \partial_2^b, \quad p_2 = \partial_2^c - \partial_3^d, \quad a = 1, b = 2, c = 1, d = 2
\]

The multiplicity of this only (non homogeneous) component at infinity is equal to the dimension of the space of solutions of the recurrences with finite support.
Consider the system of binomial equations:

\[q_1 = \partial_1 \partial_3^1 - \partial_2^2, \quad q_2 = \partial_2 \partial_4^1 - \partial_3^2 \]

in the commutative polynomial ring \(\mathbb{C}[\partial_1, \ldots, \partial_4] \).

The zero set \(q_1 = q_2 = 0 \) has two irreducible components, one of degree 3 and multiplicity 1, which intersects \((\mathbb{C}^*)^4 \), and another component “at infinity”: \(\{\partial_2 = \partial_3 = 0\} \), of degree 1 and multiplicity 1 = \(\min\{2 \times 2, 1 \times 1\} \).

This multiplicity equals the intersection multiplicity at \((0, 0)\) of the system of two binomials in two variables:

\[p_1 = \partial_3^a - \partial_2^b, \quad p_2 = \partial_2^c - \partial_3^d, \quad a = 1, b = 2, c = 1, d = 2 \]

The multiplicity of this only (non homogeneous) component at infinity is equal to the dimension of the space of solutions of the recurrences with finite support.
Consider the system of *binomial* equations:

\[q_1 = \partial_1^1 \partial_3^1 - \partial_2^2, \quad q_2 = \partial_2^1 \partial_4^1 - \partial_3^2 \]

in the commutative polynomial ring \(\mathbb{C}[\partial_1, \ldots, \partial_4] \).

The zero set \(q_1 = q_2 = 0 \) has **two irreducible components**, one of degree 3 and multiplicity 1, which intersects \((\mathbb{C}^*)^4\), and another component “at infinity”: \(\{\partial_2 = \partial_3 = 0\} \), of degree 1 and multiplicity 1 = \(\min\{2 \times 2, 1 \times 1\} \).

This multiplicity equals the **intersection multiplicity** at \((0,0)\) of the system of two binomials in two variables:

\[p_1 = \partial_3^a - \partial_2^b, \quad p_2 = \partial_2^c - \partial_3^d, \quad a = 1, \ b = 2, \ c = 1, \ d = 2 \]

The multiplicity of this only (**non homogeneous**) component at infinity is equal to the **dimension** of the space of solutions of the recurrences with finite support.
Consider the system of *binomial* equations:

\[q_1 = \partial_1^1 \partial_3^1 - \partial_2^2, \quad q_2 = \partial_2^1 \partial_4^1 - \partial_3^2 \]

in the commutative polynomial ring \(\mathbb{C}[\partial_1, \ldots, \partial_4] \).

The zero set \(q_1 = q_2 = 0 \) has two irreducible components, one of degree 3 and multiplicity 1, which intersects \((\mathbb{C}^*)^4\), and another component “at infinity”: \(\{\partial_2 = \partial_3 = 0\} \), of degree 1 and multiplicity \(1 = \min\{2 \times 2, 1 \times 1\} \).

This multiplicity equals the intersection multiplicity at \((0, 0)\) of the system of two binomials in two variables:

\[p_1 = \partial_3^a - \partial_2^b, \quad p_2 = \partial_2^c - \partial_3^d, \quad a = 1, \ b = 2, \ c = 1, \ d = 2 \]

The *multiplicity* of this only (non homogeneous) component at infinity is equal to the *dimension* of the space of solutions of the recurrences with finite support.
Finite recurrences and polynomial solutions
Finite recurrences and polynomial solutions
Finite recurrences and polynomial solutions
Let $B \in \mathbb{Z}^{n \times 2}$ with rows b_1, \ldots, b_n satisfying $b_1 + \cdots + b_n = 0$.

\[
P_i = \prod_{b_{ji} < 0} \prod_{l=0}^{|b_{ji}| - 1} (b_j \cdot \theta + c_j - l),
\]

(7)

\[
Q_i = \prod_{b_{ji} > 0} \prod_{l=0}^{b_{ji} - 1} (b_j \cdot \theta + c_j - l), \quad \text{and}
\]

(8)

\[
H_i = Q_i - x_i P_i,
\]

(9)

where $b_j \cdot \theta = \sum_{k=1}^{2} b_{jk} \theta x_k$.

The operators H_i are called Horn operators and generate the left ideal Horn (B, c) in the Weyl algebra D_2. Call $d_i = \sum_{b_{ij} > 0} b_{ij} = - \sum_{b_{ij} < 0} b_{ij}$ the order of the operator H_i.

Let $B \in \mathbb{Z}^{n \times 2}$ with rows b_1, \ldots, b_n satisfying $b_1 + \cdots + b_n = 0$.

$$P_i = \prod_{b_{ji} < 0} \prod_{l=0}^{b_{ji} - 1} (b_j \cdot \theta + c_j - l),$$ \hspace{1cm} (7)

$$Q_i = \prod_{b_{ji} > 0} \prod_{l=0}^{b_{ji} - 1} (b_j \cdot \theta + c_j - l), \text{ and}$$ \hspace{1cm} (8)

$$H_i = Q_i - x_i P_i,$$ \hspace{1cm} (9)

where $b_j \cdot \theta = \sum_{k=1}^{2} b_{jk} \theta x_k$.

The operators H_i are called \textit{Horn operators} and generate the left ideal \textit{Horn} (\mathcal{B}, c) in the Weyl algebra D_2. Call $d_i = \sum_{b_{ij} > 0} b_{ij} = - \sum_{b_{ij} < 0} b_{ij}$ the \textit{order} of the operator H_i.
Let $B \in \mathbb{Z}^{n \times 2}$ as above and let $A \in \mathbb{Z}^{(n-2) \times n}$ such that the columns $b^{(1)}, b^{(2)}$ of B span $\ker_{\mathbb{Q}}(A)$.

Write any vector $u \in \mathbb{R}^n$ as $u = u_+ - u_-$, where $(u_+)_i = \max(u_i, 0)$, and $(u_-)_i = -\min(u_i, 0)$.

Definition

$$T_i = \partial b^{(i)}_+ - \partial b^{(i)}_-,$$

$i = 1, 2$.

The left D_n-ideal $H_B(c)$ is defined by:

$$H_B(c) = \langle T_1, T_2 \rangle + \langle A \cdot \theta - A \cdot c \rangle \subseteq D_n.$$
Let $B \in \mathbb{Z}^{n \times 2}$ as above and let $A \in \mathbb{Z}^{(n-2) \times n}$ such that the columns $b^{(1)}, b^{(2)}$ of B span $\ker_{\mathbb{Q}}(A)$.

Write any vector $u \in \mathbb{R}^n$ as $u = u_+ - u_-$, where $(u_+)_i = \max(u_i, 0)$, and $(u_-)_i = -\min(u_i, 0)$.

Definition

$$T_i = \partial^{b^{(i)}}_+ - \partial^{b^{(i)}}_- , \quad i = 1, 2.$$

The left D_n-ideal $H_B(c)$ is defined by:

$$H_B(c) = \langle T_1, T_2 \rangle + \langle A \cdot \theta - A \cdot c \rangle \subseteq D_n.$$
Let $B \in \mathbb{Z}^{n \times 2}$ as above and let $A \in \mathbb{Z}^{(n-2) \times n}$ such that the columns $b^{(1)}, b^{(2)}$ of B span $\ker \mathbb{Q}(A)$.

Write any vector $u \in \mathbb{R}^n$ as $u = u_+ - u_-$, where $(u_+)_i = \max(u_i, 0)$, and $(u_-)_i = -\min(u_i, 0)$.

Definition

$$T_i = \partial b^{(i)}_+ - \partial b^{(i)}_-,$$

$i = 1, 2$.

The left D_n-ideal $H_B(c)$ is defined by:

$$H_B(c) = \langle T_1, T_2 \rangle + \langle A \cdot \theta - A \cdot c \rangle \subseteq D_n.$$
Theorem

[D.- Matusevich - Sadykov ’05] For generic complex parameters c_1, \ldots, c_n, the ideals $\text{Horn}(B, c)$ and $H_B(c)$ are holonomic. Moreover,

$$\text{rank}(H_B(c)) = \text{rank}(\text{Horn}(B, c)) = d_1 d_2 - \sum_{b_i, b_j \text{ depdt}} \nu_{ij} = g \cdot \text{vol}(A) + \sum_{b_i, b_j \text{ indepdt}} \nu_{ij} ,$$

where the pairs b_i, b_j of rows lie in opposite open quadrants of \mathbb{Z}^2.

Remarks

Solutions to recurrences with finite support correspond to (Laurent) polynomial solutions. These solutions come from (non homogeneous) primary components at infinity of the binomial ideal $\langle T_1, T_2 \rangle$. There are many linearly independent. For special parameters a special study is needed, along the lines in [D. - Matusevich and Miller ’10].
Theorem

[D.- Matusevich - Sadykov ’05] For generic complex parameters \(c_1, \ldots, c_n \), the ideals \(\text{Horn}(\mathcal{B}, c) \) and \(H_{\mathcal{B}}(c) \) are holonomic. Moreover,

\[
\text{rank}(H_{\mathcal{B}}(c)) = \text{rank}(\text{Horn} (\mathcal{B}, c)) = d_1d_2 - \sum_{b_i, b_j \text{ depdt}} \nu_{ij} = g \cdot \text{vol}(A) + \sum_{b_i, b_j \text{ indepdt}} \nu_{ij},
\]

where the the pairs \(b_i, b_j \) of rows lie in opposite open quadrants of \(\mathbb{Z}^2 \).

Remarks

Solutions to recurrences with finite support correspond to (Laurent) polynomial solutions. These solutions come from (non homogeneous) primary components at infinity of the binomial ideal \(\langle T_1, T_2 \rangle \). There are \(\sum \nu_{ij} \) many linearly independent. For special parameters a special study is needed, along the lines in [D.- Matusevich and Miller ’10].
Theorem

[D.- Matusevich - Sadykov ’05] For generic complex parameters \(c_1, \ldots, c_n\), the ideals \(\text{Horn}(\mathcal{B}, c)\) and \(H_{\mathcal{B}}(c)\) are holonomic. Moreover,

\[
\text{rank}(H_{\mathcal{B}}(c)) = \text{rank}(\text{Horn}(\mathcal{B}, c)) = d_1d_2 - \sum_{\substack{b_i, b_j \\
\text{depdt}}}{\nu_{ij}} = g \cdot \text{vol}(A) + \sum_{\substack{b_i, b_j \\
\text{indepdt}}}{\nu_{ij}},
\]

where the the pairs \(b_i, b_j\) of rows lie in opposite open quadrants of \(\mathbb{Z}^2\).

Remarks

Solutions to recurrences with finite support correspond to (Laurent) polynomial solutions. These solutions come from (non homogeneous) primary components at infinity of the binomial ideal \(\langle T_1, T_2 \rangle\). There are \(\sum \nu_{ij}\) many linearly independent. For special parameters a special study is needed, along the lines in [D. - Matusevich and Miller ’10].
Theorem

[D.- Matusevich - Sadykov ’05] For generic complex parameters c_1, \ldots, c_n, the ideals $\text{Horn}(\mathcal{B}, c)$ and $H_{\mathcal{B}}(c)$ are holonomic. Moreover,

$$\text{rank}(H_{\mathcal{B}}(c)) = \text{rank}((\text{Horn})(\mathcal{B}, c)) = d_1d_2 - \sum_{\begin{subarray}{c} b_i, b_j \text{depdt} \end{subarray}} \nu_{ij} = g \cdot \text{vol}(A) + \sum_{\begin{subarray}{c} b_i, b_j \text{indepdt} \end{subarray}} \nu_{ij},$$

where the pairs b_i, b_j of rows lie in opposite open quadrants of \mathbb{Z}^2.

Remarks

Solutions to recurrences with finite support correspond to (Laurent) polynomial solutions. These solutions come from (non homogeneous) primary components at infinity of the binomial ideal $\langle T_1, T_2 \rangle$. There are $\sum \nu_{ij}$ many linearly independent. For special parameters a special study is needed, along the lines in [D. - Matusevich and Miller ’10].
General philosophy

Moral of this story

Key to the answer is the homogenization and translation to the A-side!
Moral of this story

Key to the answer it the homogenization and translation to the A-side!
Examples of rational bivariate hypergeometric series

The proof in the talk!

Lemma: The series $f(s_1,s_2)(x) := \sum_{m\in\mathbb{N}^2} \frac{(s_1m_1+s_2m_2)!}{(s_1m_1)!(s_2m_2)!} x_1^{m_1} x_2^{m_2}$ is a rational function for all $(s_1, s_2) \in \mathbb{N}^2$.

Proof: $f(0,0)(x_1, x_2) = \sum_{m\in\mathbb{N}^2} x_1^{m_1} x_2^{m_2} = \frac{1}{(1-x_1)(1-x_2)}$,

$f(1,1)(x) = \sum_{m\in\mathbb{N}^2} \frac{(m_1+m_2)!}{m_1! m_2!} x_1^{m_1} x_2^{m_2} = \frac{1}{1-x_1-x_2}$,

$f(2,2)(x_1^2, x_2^2) = \sum_{m\in\mathbb{N}^2} \frac{(2m_1+2m_2)!}{(2m_1)!(2m_2)!} x_1^{2m_1} x_2^{2m_2} =$

$$\frac{1}{4} (f(1,1)(x_1, x_2) + f(1,1)(-x_1, x_2) + f(1,1)(x_1, -x_2) + f(1,1)(-x_1, -x_2)) =$$

$$\frac{1-x_1^2-x_2^2}{1-2x_1^2-2x_2^2-2x_1^2x_2+x_1^4+x_2^4},$$

$$f(2,2)(x_1, x_2) = \frac{1-x_1-x_2}{1-2x_1-2x_2-2x_1x_2+x_1^2+x_2^2} \cdot \Box$$
Examples of rational bivariate hypergeometric series

The proof in the talk!

Lemma: The series \(f_{(s_1,s_2)}(x) := \sum_{m \in \mathbb{N}^2} \frac{(s_1 m_1 + s_2 m_2)!}{(s_1 m_1)!(s_2 m_2)!} x_1^{m_1} x_2^{m_2} \) is a rational function for all \((s_1, s_2) \in \mathbb{N}^2\).

Proof:

\[
\begin{align*}
 f_{(0,0)}(x_1, x_2) &= \sum_{m \in \mathbb{N}^2} x_1^{m_1} x_2^{m_2} = \frac{1}{(1-x_1)(1-x_2)}, \\
 f_{(1,1)}(x) &= \sum_{m \in \mathbb{N}^2} \frac{(m_1+m_2)!}{m_1! m_2!} x_1^{m_1} x_2^{m_2} = \frac{1}{1-x_1-x_2}, \\
 f_{(2,2)}(x_1^2, x_2^2) &= \sum_{m \in \mathbb{N}^2} \frac{(2m_1+2m_2)!}{(2m_1)!(2m_2)!} x_1^{2m_1} x_2^{2m_2} = \\
 \frac{1}{4} \left(f_{(1,1)}(x_1, x_2) + f_{(1,1)}(-x_1, x_2) + f_{(1,1)}(x_1, -x_2) + f_{(1,1)}(-x_1, -x_2) \right) = \\
 \frac{1}{1-x_1^2-x_2^2} \cdot \\
 \frac{1}{1-2x_1^2-2x_2^2-2x_1^2 x_2+x_1^4+x_2^4}, \\
 f_{(2,2)}(x_1, x_2) &= \frac{1-x_1-x_2}{1-2x_1-2x_2-2x_1 x_2+x_1^2+x_2^2}. \blacksquare
\end{align*}
\]
Examples of rational bivariate hypergeometric series

The proof in the talk!

Lemma: The series $f(s_1, s_2)(x) := \sum_{m \in \mathbb{N}^2} \frac{(s_1 m_1 + s_2 m_2)!}{(s_1 m_1)!(s_2 m_2)!} x_1^{m_1} x_2^{m_2}$ is a rational function for all $(s_1, s_2) \in \mathbb{N}^2$.

Proof:

$\begin{align*}
f(0,0)(x_1, x_2) &= \sum_{m \in \mathbb{N}^2} x_1^{m_1} x_2^{m_2} = \frac{1}{(1-x_1)(1-x_2)}, \\
f(1,1)(x) &= \sum_{m \in \mathbb{N}^2} \frac{(m_1 + m_2)!}{m_1! m_2!} x_1^{m_1} x_2^{m_2} = \frac{1}{1-x_1-x_2}, \\
f(2,2)(x_1^2, x_2^2) &= \sum_{m \in \mathbb{N}^2} \frac{(2m_1 + 2m_2)!}{(2m_1)!(2m_2)!} x_1^{2m_1} x_2^{2m_2} = \\
&= \frac{1}{4} (f(1,1)(x_1, x_2) + f(1,1)(-x_1, x_2) + f(1,1)(x_1, -x_2) + f(1,1)(-x_1, -x_2)) = \frac{1-x_1^2-x_2^2}{1-2x_1^2-2x_2^2-2x_1^2 x_2+x_1^2+x_2^2}, \\
f(2,2)(x_1, x_2) &= \frac{1-x_1-x_2}{1-2x_1-2x_2-2x_1 x_2+x_1^2+x_2^2}. \Box
\end{align*}$
Examples of rational bivariate hypergeometric series

Lemma: The series $f_{(s_1,s_2)}(x) := \sum_{m \in \mathbb{N}^2} \frac{(s_1m_1+s_2m_2)!}{(s_1m_1)!(s_2m_2)!} x_1^{m_1} x_2^{m_2}$.

is a rational function for all $(s_1, s_2) \in \mathbb{N}^2$.

Proof: $f_{(0,0)}(x_1, x_2) = \sum_{m \in \mathbb{N}^2} x_1^{m_1} x_2^{m_2} = \frac{1}{(1-x_1)(1-x_2)}$, $f_{(1,1)}(x_1) = \sum_{m \in \mathbb{N}^2} \frac{(m_1+m_2)!}{m_1! m_2!} x_1^{m_1} x_2^{m_2} = \frac{1}{1-x_1-x_2}$, $f_{(2,2)}(x_1^2, x_2^2) = \sum_{m \in \mathbb{N}^2} \frac{(2m_1+2m_2)!}{(2m_1)!(2m_2)!} x_1^{2m_1} x_2^{2m_2} = \frac{1}{1-x_1^2-x_2^2} - \frac{1}{1-2x_1^2-2x_2^2-2x_1^2 x_2+x_1^4+x_2^4}$, $f_{(2,2)}(x_1, x_2) = \frac{1-x_1-x_2}{1-2x_1-2x_2-2x_1 x_2+x_1^2+x_2^2}$. \Box
Examples of rational bivariate hypergeometric series

The proof in the talk!

Lemma: The series $f_{(s_1,s_2)}(x) := \sum_{m \in \mathbb{N}^2} \frac{(s_1 m_1 + s_2 m_2)!}{(s_1 m_1)! (s_2 m_2)!} x_1^{m_1} x_2^{m_2}$.

is a rational function for all $(s_1, s_2) \in \mathbb{N}^2$.

Proof:

- $f_{(0,0)}(x_1, x_2) = \sum_{m \in \mathbb{N}^2} x_1^{m_1} x_2^{m_2} = \frac{1}{(1-x_1)(1-x_2)}$,

- $f_{(1,1)}(x) = \sum_{m \in \mathbb{N}^2} \frac{(m_1 + m_2)!}{m_1! m_2!} x_1^{m_1} x_2^{m_2} = \frac{1}{1-x_1-x_2}$,

- $f_{(2,2)}(x_1^2, x_2^2) = \sum_{m \in \mathbb{N}^2} \frac{(2m_1 + 2m_2)!}{(2m_1)! (2m_2)!} x_1^{2m_1} x_2^{2m_2} = \frac{\frac{1}{4} (f_{(1,1)}(x_1, x_2) + f_{(1,1)}(-x_1, x_2) + f_{(1,1)}(x_1, -x_2) + f_{(1,1)}(-x_1, -x_2))}{1-x_1^2-x_2^2} = \frac{1-x_1-x_2}{1-2x_1^2-2x_2^2-2x_1^2 x_2^2 + x_1^4 + x_2^4}$,

- $f_{(2,2)}(x_1, x_2) = \frac{1-x_1-x_2}{1-2x_1-2x_2-2x_1 x_2 + x_1^2 + x_2^2}$.$\blacksquare$
Examples of rational bivariate hypergeometric series

The proof in the talk!

Lemma: The series \(f(s_1, s_2)(x) := \sum_{m \in \mathbb{N}^2} \frac{(s_1 m_1 + s_2 m_2)!}{(s_1 m_1)! (s_2 m_2)!} x_1^{m_1} x_2^{m_2} \).

is a rational function for all \((s_1, s_2) \in \mathbb{N}^2\).

Proof:

\[f(0,0)(x_1, x_2) = \sum_{m \in \mathbb{N}^2} x_1^{m_1} x_2^{m_2} = \frac{1}{(1-x_1)(1-x_2)}, \]

\[f(1,1)(x) = \sum_{m \in \mathbb{N}^2} \frac{(m_1 + m_2)!}{m_1! m_2!} x_1^{m_1} x_2^{m_2} = \frac{1}{1-x_1-x_2}, \]

\[f(2,2)(x_1^2, x_2^2) = \sum_{m \in \mathbb{N}^2} \frac{(2m_1 + 2m_2)!}{(2m_1)! (2m_2)!} x_1^{2m_1} x_2^{2m_2} = \]

\[\frac{1}{4} (f(1,1)(x_1, x_2) + f(1,1)(-x_1, x_2) + f(1,1)(x_1, -x_2) + f(1,1)(-x_1, -x_2)) = \]

\[\frac{1-x_1^2-x_2^2}{1-2x_1^2-2x_2^2-2x_1^2x_2+x_1^4+x_2^4}, \]

\[f(2,2)(x_1, x_2) = \frac{1-x_1-x_2}{1-2x_1-2x_2-2x_1x_2+x_1^2+x_2^2}. \square \]
The proof in the talk!

Lemma: The series
\[f_{s_1,s_2}(x) := \sum_{m \in \mathbb{N}^2} \frac{(s_1m_1+s_2m_2)!}{(s_1m_1)!(s_2m_2)!} x_1^{m_1} x_2^{m_2} \]
is a rational function for all \((s_1, s_2) \in \mathbb{N}^2\).

Proof:

\[f_{(0,0)}(x_1, x_2) = \sum_{m \in \mathbb{N}^2} x_1^{m_1} x_2^{m_2} = \frac{1}{(1-x_1)(1-x_2)}, \]

\[f_{(1,1)}(x) = \sum_{m \in \mathbb{N}^2} \frac{(m_1+m_2)!}{m_1!m_2!} x_1^{m_1} x_2^{m_2} = \frac{1}{1-x_1-x_2}, \]

\[f_{(2,2)}(x_1^2, x_2^2) = \sum_{m \in \mathbb{N}^2} \frac{(2m_1+2m_2)!}{(2m_1)!(2m_2)!} x_1^{2m_1} x_2^{2m_2} = \]

\[\frac{1}{4} \left(f_{(1,1)}(x_1, x_2) + f_{(1,1)}(-x_1, x_2) + f_{(1,1)}(x_1, -x_2) + f_{(1,1)}(-x_1, -x_2) \right) = \]

\[\frac{1-x_1^2-x_2^2}{1-2x_1^2-2x_2^2-2x_1^2x_2+x_1^4+x_2^4}, \]

\[f_{(2,2)}(x_1, x_2) = \frac{1-x_1-x_2}{1-2x_1-2x_2-2x_1x_2+x_1^2+x_2^2}. \]
A second proof!

Proof: The series $f_{(s_1,s_2)}(x) := \sum_{m\in \mathbb{N}^2} \frac{(s_1m_1+s_2m_2)!}{(s_1m_1)!(s_2m_2)!} x_1^{m_1} x_2^{m_2}$ defines a rational function for all $(s_1, s_2) \in \mathbb{N}^2$ because it equals the following residue:

$$f_{(s_1,s_2)}(x) = \sum_{\xi_1^{s_1} = -x_1, \xi_2^{s_2} = -x_2} \text{Res}_{\xi} \left(\frac{t_1^{s_1} t_2^{s_2}/(t_1 + t_2 + 1)}{(x_1 + t_1^{s_1})(x_2 + t_2^{s_2})} \frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2} \right) =$$

$$= \frac{1}{s_1 s_2} \sum_{\xi_1^{s_1} = -x_1, \xi_2^{s_2} = -x_2} \frac{1}{\xi_1 + \xi_2 + 1} \diamond$$
A second proof!

Proof: The series \(f_{(s_1, s_2)}(x) := \sum_{m \in \mathbb{N}^2} \frac{(s_1 m_1 + s_2 m_2)!}{(s_1 m_1)! (s_2 m_2)!} x_1^{m_1} x_2^{m_2} \) defines a rational function for all \((s_1, s_2) \in \mathbb{N}^2\) because it equals the following residue:

\[
f_{(s_1, s_2)}(x) = \sum_{\xi_1^{s_1} = -x_1, \xi_2^{s_2} = -x_2} \text{Res}_\xi \left(\frac{t_1^{s_1} t_2^{s_2}/(t_1 + t_2 + 1)}{(x_1 + t_1^{s_1})(x_2 + t_2^{s_2})} \frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2} \right) =
\]

\[
= \frac{1}{s_1 s_2} \sum_{\xi_1^{s_1} = -x_1, \xi_2^{s_2} = -x_2} \frac{1}{\xi_1 + \xi_2 + 1} \cdot \Box
\]
A second proof!

Proof: The series $f_{(s_1,s_2)}(x) := \sum_{m \in \mathbb{N}^2} \frac{(s_1 m_1 + s_2 m_2)!}{(s_1 m_1)!(s_2 m_2)!} x_1^{m_1} x_2^{m_2}$ defines a rational function for all $(s_1, s_2) \in \mathbb{N}^2$ because it equals the following residue:

$$f_{(s_1,s_2)}(x) = \sum_{\xi_1^{s_1} = -x_1, \xi_2^{s_2} = -x_2} \text{Res}_\xi \left(\frac{t_1^{s_1} t_2^{s_2}}{(x_1 + t_1^{s_1})(x_2 + t_2^{s_2})} \frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2} \right) =$$

$$= \frac{1}{s_1 s_2} \sum_{\xi_1^{s_1} = -x_1, \xi_2^{s_2} = -x_2} \frac{1}{\xi_1 + \xi_2 + 1}. \qed$$
Question

When is a hypergeometric series in 2 variables rational?

Let \(c^i = (c_1^i, c_2^i) \) and \(d^j = (d_1^j, d_2^j) \) for \(i = 1, \ldots, r; j = 1, \ldots, s \) be vectors in \(\mathbb{N}^2 \). When is the series

\[
\sum_{m \in \mathbb{N}^2} \frac{\prod_{i=1}^r (c_1^i m_1 + c_2^i m_2)!}{\prod_{j=1}^s (d_1^j m_1 + d_2^j m_2)!} x_1^{m_1} x_2^{m_2}
\]

the Taylor expansion of a rational function?
Question

When is a hypergeometric series in 2 variables rational?

Let $c^i = (c^i_1, c^i_2)$ and $d^j = (d^j_1, d^j_2)$ for $i = 1,\ldots,r; j = 1,\ldots,s$ be vectors in \mathbb{N}^2. When is the series

$$
\sum_{m \in \mathbb{N}^2} \frac{\prod_{i=1}^r (c^i_1 m_1 + c^i_2 m_2)!}{\prod_{j=1}^s (d^j_1 m_1 + d^j_2 m_2)!} x_1^{m_1} x_2^{m_2}
$$

the Taylor expansion of a rational function?
Rational bivariate hypergeometric series

Question

When is a hypergeometric series in 2 variables rational?

Let \(c^i = (c^i_1, c^i_2) \) and \(d^j = (d^j_1, d^j_2) \) for \(i = 1, \ldots, r; j = 1, \ldots, s \) be vectors in \(\mathbb{N}^2 \). When is the series

\[
\sum_{m \in \mathbb{N}^2} \frac{\prod_{i=1}^r (c^i_1 m_1 + c^i_2 m_2)!}{\prod_{j=1}^s (d^j_1 m_1 + d^j_2 m_2)!} x_1^{m_1} x_2^{m_2}
\]

the Taylor expansion of a rational function?
Theorem:

Let $c^i = (c^i_1, c^i_2)$ and $d^j = (d^j_1, d^j_2)$ for $i = 1, \ldots, r; j = 1, \ldots, s$ be vectors in \mathbb{N}^2 (with $\sum c^i = \sum d^j$).

The series $\sum_{m \in \mathbb{N}^2} \frac{\prod_{i=1}^r (c^i_1 m_1 + c^i_2 m_2)!}{\prod_{j=1}^s (d^j_1 m_1 + d^j_2 m_2)!} x_1^{m_1} x_2^{m_2}$ is the Taylor expansion of a rational function if and only if it is of the form $f_{(s_1, s_2)}(x)$.

A. Dickenstein (U. Buenos Aires)
Rational bivariate hypergeometric series

Answer

Theorem:

Let \(c^i = (c_1^i, c_2^i) \) and \(d^j = (d_1^j, d_2^j) \) for \(i = 1, \ldots, r; j = 1, \ldots, s \) be vectors in \(\mathbb{N}^2 \) (with \(\sum c^i = \sum d^j \)).

The series \(\sum_{m \in \mathbb{N}^2} \frac{\prod_{i=1}^r (c_1^i m_1 + c_2^i m_2)!}{\prod_{j=1}^s (d_1^j m_1 + d_2^j m_2)!} x_1^{m_1} x_2^{m_2} \) is the Taylor expansion of a rational function if and only if it is of the form \(f_{(s_1, s_2)}(x) \).
Answer

Theorem:

Let \(c^i = (c^i_1, c^i_2) \) and \(d^j = (d^j_1, d^j_2) \) for \(i = 1, \ldots, r; j = 1, \ldots, s \) be vectors in \(\mathbb{N}^2 \) (with \(\sum c^i = \sum d^j \)).

The series \(\sum_{m \in \mathbb{N}^2} \frac{\prod_{i=1}^{r} (c^i_1 m_1 + c^i_2 m_2)!}{\prod_{j=1}^{s} (d^j_1 m_1 + d^j_2 m_2)!} x_1^{m_1} x_2^{m_2} \) is the Taylor expansion of a rational function if and only if it is of the form \(f(s_1, s_2)(x) \).
Answer

Theorem:

Let $c^i = (c_1^i, c_2^i)$ and $d^j = (d_1^j, d_2^j)$ for $i = 1, \ldots, r; j = 1, \ldots, s$ be vectors in \mathbb{N}^2 (with $\sum c^i = \sum d^j$).

The series $\sum_{m \in \mathbb{N}^2} \frac{\prod_{i=1}^{r} (c_1^i m_1 + c_2^i m_2)!}{\prod_{j=1}^{s} (d_1^j m_1 + d_2^j m_2)!} x_1^{m_1} x_2^{m_2}$ is the Taylor expansion of a rational function if and only if it is of the form $f_{(s_1,s_2)}(x)$.
Gessell and Xin´s example of a rational bivariate hypergeometric series

What if the cone is not the first orthant?

We had

\[G(x, y) = \frac{1 - xy}{1 - xy^2} = \sum \binom{m + n}{3m - n} x^m y^n \]

where we are summing over the lattice points in the (pointed) non-unimodular convex cone \(\mathbb{R}_{\geq 0} (1, 2) + \mathbb{R}_{\geq 0} (2, 1) \).

Calling \(m_1 = m - n, m_2 = n - m \) (so that \(m = \frac{m_1 + m_2}{3}, n = \frac{m_1 + 2m_2}{3} \)),

\[G(x, y) = \sum_{(m_1, m_2) \in \mathbb{Z}^2} \binom{m_1 + m_2}{3m_1/3} x^{m_1} y^{m_2} , \]

where \(L = \mathbb{Z}(1, 2) + \mathbb{Z}(2, 1) = \{ (m_1, m_2) : m_1 \equiv m_2 \mod 3 \} \) and \(x = x^1, y = y^2 \).

The shape of the non-zero coefficients is the expected, but the sum is over a sublattice.
What if the cone is not the first orthant?

We had

\[GX(x, y) = \frac{1 - xy}{1 - xy^2 - 3xy - x^2y} = \sum \binom{m+n}{2m-n} x^m y^n , \]

where we are summing over the lattice points in the (pointed) non unimodular convex cone \(\mathbb{R}_{\geq 0}(1, 2) + \mathbb{R}_{\geq 0}(2, 1) \).

Calling \(m_1 = 2m - n, m_2 = 2n - m \) (so that \(m = \frac{2m_1 + m_2}{3}, n = \frac{m_1 + 2m_2}{3} \)):

\[\frac{1 - xy}{1 - xy^2 - 3xy - x^2y} = \sum (m_1, m_2) \in L \cap \mathbb{N}^2 \frac{(m_1 + m_2)!}{m_1! m_2!} u_1^{m_1} u_2^{m_2} , \]

where \(L = \mathbb{Z}(1, 2) + \mathbb{Z}(2, 1) = \{(m_1, m_2) \in \mathbb{Z}^2 : m_1 \equiv m_2 \mod 3 \} \) and \(u_1^3 = x^2y, u_2^3 = xy^2 \).

The shape of the non zero coefficients is the expected, but the sum is over a sublattice.
Gessell and Xin’s example of a rational bivariate hypergeometric series

What if the cone is not the first orthant?

We had

\[GX(x, y) = \frac{1 - xy}{1 - xy^2 - 3xy - x^2y} = \sum \binom{m + n}{2m - n} x^m y^n, \]

where we are summing over the lattice points in the (pointed) non unimodular convex cone \(\mathbb{R}_{\geq 0}(1, 2) + \mathbb{R}_{\geq 0}(2, 1) \).

Calling \(m_1 = 2m - n, m_2 = 2n - m \) (so that \(m = \frac{2m_1 + m_2}{3}, n = \frac{m_1 + 2m_2}{3} \)):

\[\frac{1 - xy}{1 - xy^2 - 3xy - x^2y} = \sum_{(m_1, m_2) \in L \cap \mathbb{N}^2} \frac{(m_1 + m_2)!}{m_1! m_2!} u_1^{m_1} u_2^{m_2}, \]

where \(L = \mathbb{Z}(1, 2) + \mathbb{Z}(2, 1) = \{(m_1, m_2) \in \mathbb{Z}^2 : m_1 \equiv m_2 \mod 3\} \) and \(u_1^3 = x^2y, u_2^3 = xy^2 \).

The shape of the non zero coefficients is the expected, but the sum is over a sublattice.
Gessell and Xin´s example of a rational bivariate hypergeometric series

What if the cone is not the first orthant?

We had

\[
GX(x, y) = \frac{1 - xy}{1 - xy^2 - 3xy - x^2y} = \sum \binom{m + n}{2m - n} x^m y^n,
\]

where we are summing over the lattice points in the (pointed) non unimodular convex cone \(\mathbb{R}_{\geq 0}(1, 2) + \mathbb{R}_{\geq 0}(2, 1) \).

Calling \(m_1 = 2m - n, m_2 = 2n - m \) (so that \(m = \frac{2m_1 + m_2}{3}, n = \frac{m_1 + 2m_2}{3} \)):

\[
\frac{1 - xy}{1 - xy^2 - 3xy - x^2y} = \sum_{(m_1, m_2) \in L \cap \mathbb{N}^2} \frac{(m_1 + m_2)!}{m_1! m_2!} u_1^{m_1} u_2^{m_2},
\]

where \(L = \mathbb{Z}(1, 2) + \mathbb{Z}(2, 1) = \{(m_1, m_2) \in \mathbb{Z}^2 : m_1 \equiv m_2 \mod 3\} \) and \(u_1^3 = x^2y, u_2^3 = xy^2 \).

The shape of the non zero coefficients is the expected, but the sum is over a sublattice.
Gessell and Xin’s example of a rational bivariate hypergeometric series

What if the cone is not the first orthant?

We had

\[GX(x, y) = \frac{1 - xy}{1 - xy^2 - 3xy - x^2y} = \sum \binom{m + n}{2m - n} x^m y^n , \]

where we are summing over the lattice points in the (pointed) \textbf{non unimodular} convex cone \(\mathbb{R}_{\geq 0}(1, 2) + \mathbb{R}_{\geq 0}(2, 1) \).

Calling \(m_1 = 2m - n, m_2 = 2n - m \) (so that \(m = \frac{2m_1 + m_2}{3}, n = \frac{m_1 + 2m_2}{3} \)):

\[\frac{1 - xy}{1 - xy^2 - 3xy - x^2y} = \sum_{(m_1, m_2) \in L \cap \mathbb{N}^2} \frac{(m_1 + m_2)!}{m_1! m_2!} u_1^{m_1} u_2^{m_2} , \]

where \(L = \mathbb{Z}(1, 2) + \mathbb{Z}(2, 1) = \{(m_1, m_2) \in \mathbb{Z}^2 : m_1 \equiv m_2 \mod 3\} \) and \(u_1^3 = x^2y, u_2^3 = xy^2 \).

The shape of the \textbf{non zero} coefficients is the expected, but the sum is over a sublattice.
Gessell and Xin’s example of a rational bivariate hypergeometric series

What if the cone is not the first orthant?

We had

\[GX(x, y) = \frac{1 - xy}{1 - xy^2 - 3xy - x^2y} = \sum \binom{m + n}{2m - n} x^m y^n, \]

where we are summing over the lattice points in the (pointed) non unimodular convex cone \(\mathbb{R}_{\geq 0}(1, 2) + \mathbb{R}_{\geq 0}(2, 1) \).

Calling \(m_1 = 2m - n, m_2 = 2n - m \) (so that \(m = \frac{2m_1 + m_2}{3}, n = \frac{m_1 + 2m_2}{3} \)):

\[\frac{1 - xy}{1 - xy^2 - 3xy - x^2y} = \sum_{(m_1, m_2) \in L \cap \mathbb{N}^2} \frac{(m_1 + m_2)!}{m_1! m_2!} u_1^{m_1} u_2^{m_2}, \]

where \(L = \mathbb{Z}(1, 2) + \mathbb{Z}(2, 1) = \{(m_1, m_2) \in \mathbb{Z}^2 : m_1 \equiv m_2 \mod 3 \} \) and \(u_1^3 = x^2y, u_2^3 = xy^2 \).

The shape of the non zero coefficients is the expected, but the sum is over a sublattice.
What if the cone is not the first orthant?

We had

$$GX(x, y) = \frac{1 - xy}{1 - xy^2 - 3xy - x^2y} = \sum \binom{m + n}{2m - n} x^m y^n,$$

where we are summing over the lattice points in the (pointed) non unimodular convex cone $\mathbb{R}_{\geq 0}(1, 2) + \mathbb{R}_{\geq 0}(2, 1)$.

Calling $m_1 = 2m - n, m_2 = 2n - m$ (so that $m = \frac{2m_1 + m_2}{3}, n = \frac{m_1 + 2m_2}{3}$):

$$\frac{1 - xy}{1 - xy^2 - 3xy - x^2y} = \sum (m_1, m_2) \in L \cap \mathbb{N}^2 \binom{m_1 + m_2}{m_1!m_2!} u_1^{m_1} u_2^{m_2},$$

where $L = \mathbb{Z}(1, 2) + \mathbb{Z}(2, 1) = \{(m_1, m_2) \in \mathbb{Z}^2 : m_1 \equiv m_2 \mod 3\}$ and $u_1^3 = x^2y, u_2^3 = xy^2$.

The shape of the non zero coefficients is the expected, but the sum is over a sublattice.
The general result

Data

Suppose we are given linear functionals
\[\ell_i(m_1, m_2) := \langle b_i, (m_1, m_2) \rangle + k_i, \quad i = 1, \ldots, n, \]
where \(b_i \in \mathbb{Z}^2 \setminus \{0\}, k_i \in \mathbb{Z} \) and \(\sum_{i=1}^{n} b_i = 0 \).

Take \(C \) a rational convex cone. The bivariate series:
\[\phi(x_1, x_2) = \sum_{m \in C \cap \mathbb{Z}^2} \frac{\prod_{\ell_i(m) < 0} (-1)^{\ell_i(m)} (-\ell_i(m) - 1)!}{\prod_{\ell_j(m) > 0} \ell_j(m)!} x_1^{m_1} x_2^{m_2}. \tag{10} \]
is called a Horn series.

The coefficients \(c_m \) of \(\phi \) satisfy hypergeometric recurrences: for \(j = 1, 2 \), and any \(m \in C \cap \mathbb{Z}^2 \) such that \(m + e_j \) also lies in \(C \):
\[\frac{c_{m+e_j}}{c_m} = \frac{\prod_{b_{ij} < 0} \prod_{l=0}^{b_{ij}+1} \ell_i(m) - l}{\prod_{b_{ij} > 0} \prod_{l=1}^{b_{ij}} \ell_i(m) + l}. \]
The general result

Data
Suppose we are given linear functionals
\[\ell_i(m_1, m_2) := \langle b_i, (m_1, m_2) \rangle + k_i, \quad i = 1, \ldots, n, \]
where \(b_i \in \mathbb{Z}^2 \setminus \{0\} \), \(k_i \in \mathbb{Z} \) and \(\sum_{i=1}^{n} b_i = 0 \).

Take \(\mathcal{C} \) a rational convex cone. The bivariate series:
\[\phi(x_1, x_2) = \sum_{m \in \mathcal{C} \cap \mathbb{Z}^2} \frac{\prod_{\ell_i(m) < 0} (-1)^{\ell_i(m)} (-\ell_i(m) - 1)! \prod_{\ell_j(m) > 0} \ell_j(m)!}{\prod_{l} \ell_i(m) - l x_1^{m_1} x_2^{m_2}}. \quad (10) \]
is called a Horn series.

The coefficients \(c_m \) of \(\phi \) satisfy hypergeometric recurrences: for \(j = 1, 2 \), and any \(m \in \mathcal{C} \cap \mathbb{Z}^2 \) such that \(m + e_j \) also lies in \(\mathcal{C} \):
\[\frac{c_{m+e_j}}{c_m} = \frac{\prod_{b_{ij} < 0} \prod_{l=0}^{-b_{ij}+1} \ell_i(m) - l}{\prod_{b_{ij} > 0} \prod_{l=1}^{b_{ij}} \ell_i(m) + l}. \]
The general result

Data

Suppose we are given linear functionals
\[\ell_i(m_1, m_2) := \langle b_i, (m_1, m_2) \rangle + k_i, \quad i = 1, \ldots, n, \]
where \(b_i \in \mathbb{Z}^2 \setminus \{0\} \), \(k_i \in \mathbb{Z} \) and \(\sum_{i=1}^n b_i = 0 \).

Take \(C \) a rational convex cone. The bivariate series:
\[
\phi(x_1, x_2) = \sum_{m \in C \cap \mathbb{Z}^2} \frac{\prod_{\ell_i(m) < 0} (-1)^{\ell_i(m)} (-\ell_i(m) - 1)! \prod_{\ell_j(m) > 0} \ell_j(m)!}{\prod_{\ell_i(m) < 0} (-1)^{\ell_i(m)} (-\ell_i(m) - 1)! \prod_{\ell_j(m) > 0} \ell_j(m)!} x_1^{m_1} x_2^{m_2}.
\]

is called a Horn series.

The coefficients \(c_m \) of \(\phi \) satisfy hypergeometric recurrences: for \(j = 1, 2 \), and any \(m \in C \cap \mathbb{Z}^2 \) such that \(m + e_j \) also lies in \(C \):
\[
\frac{c_{m+e_j}}{c_m} = \frac{\prod_{b_{ij} < 0} \prod_{l=0}^{-b_{ij}+1} \ell_i(m) - l}{\prod_{b_{ij} > 0} \prod_{l=1}^{b_{ij}} \ell_i(m) + l}.
\]
The general result

Data

Suppose we are given linear functionals
\[\ell_i(m_1, m_2) := \langle b_i, (m_1, m_2) \rangle + k_i, \quad i = 1, \ldots, n, \]
where \(b_i \in \mathbb{Z}^2 \setminus \{0\}, k_i \in \mathbb{Z} \) and \(\sum_{i=1}^n b_i = 0. \)

Take \(\mathcal{C} \) a rational convex cone. The bivariate series:
\[
\phi(x_1, x_2) = \sum_{m \in \mathcal{C} \cap \mathbb{Z}^2} \frac{\prod_{\ell_i(m) < 0} (-1)^{\ell_i(m)} (-\ell_i(m) - 1)!}{\prod_{\ell_j(m) > 0} \ell_j(m)!} x_1^{m_1} x_2^{m_2}. \tag{10}
\]
is called a Horn series.

The coefficients \(c_m \) of \(\phi \) satisfy hypergeometric recurrences: for \(j = 1, 2, \)
and any \(m \in \mathcal{C} \cap \mathbb{Z}^2 \) such that \(m + e_j \) also lies in \(\mathcal{C} \):
\[
\frac{c_{m+e_j}}{c_m} = \frac{\prod_{\ell_i(m) < 0} \prod_{l=0}^{-b_{ij}+1} \ell_i(m) - l}{\prod_{\ell_i(m) > 0} \prod_{l=1}^{b_{ij}} \ell_i(m) + l}.
\]
The general result

Theorem

[Cattani, D.-, R. Villegas '09]

If the Horn series $\phi(x_1, x_2)$ is a rational function then: either

(i) $n = 2r$ is even and, after reordering we may assume:

$$b_1 + b_{r+1} = \cdots = b_r + b_{2r} = 0, \text{ or}$$

(ii) B consists of $n = 2r + 3$ vectors and, after reordering, we may assume that b_1, \ldots, b_{2r} satisfy (11) and $b_{2r+1} = s_1 \nu_1$, $b_{2r+2} = s_2 \nu_2$, $b_{2r+3} = -b_{2r+1} - b_{2r+2}$, where ν_1, ν_2 are the primitive, integral, inward-pointing normals of C and s_1, s_2 are positive integers.

Moreover, ϕ can be expressed as a *residue.*
The general result

Theorem

[Cattani, D.-, R. Villegas ’09]
If the Horn series $\phi(x_1, x_2)$ is a rational function then: either

(i) $n = 2r$ is even and, after reordering we may assume:

$$b_1 + b_{r+1} = \cdots = b_r + b_{2r} = 0, \text{ or}$$

(ii) B consists of $n = 2r + 3$ vectors and, after reordering, we may assume that b_1, \ldots, b_{2r} satisfy (11) and $b_{2r+1} = s_1 \nu_1$, $b_{2r+2} = s_2 \nu_2$, $b_{2r+3} = -b_{2r+1} - b_{2r+2}$, where ν_1, ν_2 are the primitive, integral, inward-pointing normals of C and s_1, s_2 are positive integers.

Moreover, ϕ can be expressed as a residue.
The general result

Theorem

[Cattani, D.-, R. Villegas ’09]

If the Horn series $\phi(x_1, x_2)$ is a rational function then: either

(i) $n = 2r$ is even and, after reordering we may assume:

$$b_1 + b_{r+1} = \cdots = b_r + b_{2r} = 0,$$

or

(ii) B consists of $n = 2r + 3$ vectors and, after reordering, we may assume that b_1, \ldots, b_{2r} satisfy (11) and $b_{2r+1} = s_1 \nu_1$, $b_{2r+2} = s_2 \nu_2$, $b_{2r+3} = -b_{2r+1} - b_{2r+2}$, where ν_1, ν_2 are the primitive, integral, inward-pointing normals of C and s_1, s_2 are positive integers.

Moreover, ϕ can be expressed as a residue.
The general result

Theorem

[Cattani, D.-, R. Villegas ’09]
If the Horn series $\phi(x_1, x_2)$ is a rational function then: either

(i) $n = 2r$ is even and, after reordering we may assume:

$$b_1 + b_{r+1} = \cdots = b_r + b_{2r} = 0,$$

(ii) B consists of $n = 2r + 3$ vectors and, after reordering, we may assume that b_1, \ldots, b_{2r} satisfy (11) and $b_{2r+1} = s_1 \nu_1$, $b_{2r+2} = s_2 \nu_2$, $b_{2r+3} = -b_{2r+1} - b_{2r+2}$, where ν_1, ν_2 are the primitive, integral, inward-pointing normals of C and s_1, s_2 are positive integers.

Moreover, ϕ can be expressed as a residue.
The general result

Theorem

[Cattani, D.-, R. Villegas ’09]
If the Horn series $\phi(x_1, x_2)$ is a rational function then: either

(i) $n = 2r$ is even and, after reordering we may assume:

\[b_1 + b_{r+1} = \cdots = b_r + b_{2r} = 0, \text{ or} \]

(ii) B consists of $n = 2r + 3$ vectors and, after reordering, we may assume that b_1, \ldots, b_{2r} satisfy (11) and $b_{2r+1} = s_1 \nu_1$, $b_{2r+2} = s_2 \nu_2$, $b_{2r+3} = -b_{2r+1} - b_{2r+2}$, where ν_1, ν_2 are the primitive, integral, inward-pointing normals of C and s_1, s_2 are positive integers.

Moreover, ϕ can be expressed as a residue.
Gessell and Xin´s example as a residue

\[\phi(x) = GX(-x) = \sum_{m \in \mathbb{C} \cap \mathbb{Z}^2} (-1)^{m_1 + m_2} \left(m_1 + m_2 \right) \left(2m_1 - m_2 \right) x_1^{m_1} x_2^{m_2} \] is a Horn series.

We read the lattice vectors \(b_1 = (-1, -1), b_2 = (-1, 2), b_3 = (2, -1), \) and we enlarge them to a configuration \(B \) by adding the vectors \(b_4 = (1, 0) \) and \(b_5 = (-1, 0). \)

\(B \) is the Gale dual of the configuration \(A \):

\[
A = \begin{pmatrix}
1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 1 & 2 & 0 & 3
\end{pmatrix}
\]

and \(\phi(x) \) is the dehomogenization of a toric residue associated to \(f_1 = z_1 + z_2 t + z_3 t^2, f_2 = z_4 + z_5 t^3. \)

In inhomogeneous coordinates we have the not so nice expression:

\[
\phi(x) = \sum_{\eta^3 = -x_2/x_1} \text{Res}_\eta \left(\frac{x_2 t/(x_2 + x_2 t - t^2)}{x_2 + x_1 t^3} \right) dt,
\]
\[\phi(x) = GX(-x) = \sum_{m \in C \cap \mathbb{Z}^2} (-1)^{m_1 + m_2} \left(\frac{m_1}{2m_1 - m_2} \right) x_1^{m_1} x_2^{m_2} \] is a Horn series.

We read the lattice vectors \(b_1 = (-1, -1), b_2 = (-1, 2), b_3 = (2, -1), \) and we enlarge them to a configuration \(B \) by adding the vectors \(b_4 = (1, 0) \) and \(b_5 = (-1, 0) \).

\(B \) is the Gale dual of the configuration \(A \):

\[
A = \begin{pmatrix}
1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 1 & 2 & 0 & 3
\end{pmatrix}
\]

and \(\phi(x) \) is the dehomogenization of a toric residue associated to \(f_1 = z_1 + z_2 t + z_3 t^2, f_2 = z_4 + z_5 t^3 \).

In inhomogeneous coordinates we have the not so nice expression:

\[
\phi(x) = \sum_{\eta^3 = -x_2/x_1} \text{Res}_\eta \left(\frac{x_2 t/(x_2 + x_2 t - t^2)}{x_2 + x_1 t^3} \right) dt,
\]
Gessell and Xin’s example as a residue

\[\phi(x) = GX(-x) = \sum_{m \in \mathcal{C} \cap \mathbb{Z}^2} (-1)^{m_1 + m_2} \left(\frac{m_1 + m_2}{2m_1 - m_2} \right) x_1^{m_1} x_2^{m_2} \] is a Horn series.

We read the lattice vectors \(b_1 = (-1, -1), \ b_2 = (-1, 2), \ b_3 = (2, -1), \) and we enlarge them to a configuration \(B \) by adding the vectors \(b_4 = (1, 0) \) and \(b_5 = (-1, 0). \)

\(B \) is the Gale dual of the configuration \(A: \)

\[
A = \begin{pmatrix}
1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 1 & 2 & 0 & 3
\end{pmatrix}
\]

and \(\phi(x) \) is the dehomogenization of a toric residue associated to \(f_1 = z_1 + z_2 t + z_3 t^2, f_2 = z_4 + z_5 t^3. \)

In inhomogeneous coordinates we have the not so nice expression:

\[
\phi(x) = \sum_{\eta^3 = -x_2/x_1} \text{Res}_\eta \left(\frac{x_2 t / (x_2 + x_2 t - t^2)}{x_2 + x_1 t^3} dt \right),
\]
Gessell and Xin´s example as a residue

\[\phi(x) = GX(-x) = \sum_{m \in \mathcal{C} \cap \mathbb{Z}^2} (-1)^{m_1 + m_2} (\frac{m_1 + m_2}{2m_1 - m_2}) x_1^{m_1} x_2^{m_2} \] is a Horn series.

We read the lattice vectors \(b_1 = (-1, -1), b_2 = (-1, 2), b_3 = (2, -1), \) and we enlarge them to a configuration \(B \) by adding the vectors \(b_4 = (1, 0) \) and \(b_5 = (-1, 0) \).

\(B \) is the Gale dual of the configuration \(A \):

\[
\begin{pmatrix}
1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 1 & 2 & 0 & 3
\end{pmatrix}
\]

and \(\phi(x) \) is the dehomogenization of a toric residue associated to \(f_1 = z_1 + z_2 t + z_3 t^2, f_2 = z_4 + z_5 t^3 \).

In inhomogeneous coordinates we have the not so nice expression:

\[
\phi(x) = \sum_{\eta^3 = -x_2/x_1} \text{Res}_\eta \left(\frac{x_2 t / (x_2 + x_2 t - t^2)}{x_2 / x_1 + t^3} \right) dt,
\]
Outline of the proof

A key lemma about Laurent expansions of rational functions + a nice ingredient: the *diagonals* of a rational bivariate power series define classical hypergeometric algebraic univariate functions. [Polya ’22, Furstenberg ’67, Safonov ’00].

Number theoretic + monodromy ingredients: we use Theorem M below to reduce to the algebraic hyperg. functions classified by [Beukers-Heckmann ’89], [F. R. Villegas ’03, Bober ’08]

Many previous results on A-hypergeometric functions, allow us to analyze the possible Laurent expansions of rational hypergeometric solutions and to construct rational solutions using toric residues. [Saito-Sturmfels-Takayama ´99; Cattani, D.-Sturmfels ’01, 02; Cattani - D. ´04].
A key lemma about Laurent expansions of rational functions + a nice ingredient: the **diagonals** of a rational bivariate power series define classical hypergeometric algebraic univariate functions. [Polya ’22, Furstenberg ’67, Safonov ’00].

Number theoretic + monodromy ingredients: we use Theorem M below to reduce to the algebraic hyperg. functions classified by [Beukers-Heckmann ’89], [F. R. Villegas ’03, Bober ’08]

Many previous results on A-hypergeometric functions, allow us to analyze the possible Laurent expansions of rational hypergeometric solutions and to construct rational solutions using toric residues. [Saito-Sturmfels-Takayama ´99; Cattani, D.- Sturmfels ’01, 02; Cattani - D. ´04].
Outline of the proof

A key lemma about Laurent expansions of rational functions + a nice ingredient: the *diagonals* of a rational bivariate power series define classical hypergeometric *algebraic* univariate functions. [Polya ’22, Furstenberg ’67, Safonov ’00].

Number theoretic + monodromy ingredients: we use Theorem M below to reduce to the algebraic hyperg. functions classified by [Beukers-Heckmann ’89], [F. R. Villegas ’03, Bober ’08]

Many previous results on A-hypergeometric functions, allow us to analyze the possible Laurent expansions of rational hypergeometric solutions and to construct rational solutions using toric residues. [Saito-Sturmfels-Takayama ´99; Cattani, D.-Sturmfels ’01, 02; Cattani - D. ´04] .
Given a bivariate power series

\[f(x_1, x_2) := \sum_{n,m \geq 0} a_{m,n} x_1^m x_2^n \]

and \(\delta = (\delta_1, \delta_2) \in \mathbb{Z}^2_{>0} \), with \(\gcd(\delta_1, \delta_2) = 1 \), we define the \(\delta \)-diagonal of \(f \) as:

\[f_\delta(t) := \sum_{r \geq 0} a_{\delta_1 r, \delta_2 r} t^r. \]
Diagonals of bivariate series

Given a bivariate power series

\[
f(x_1, x_2) := \sum_{n,m \geq 0} a_{m,n} x_1^m x_2^n \tag{12}\]

and \(\delta = (\delta_1, \delta_2) \in \mathbb{Z}_{>0}^2 \), with \(\gcd(\delta_1, \delta_2) = 1 \), we define the \(\delta \)-diagonal of \(f \) as:

\[
f_\delta(t) := \sum_{r \geq 0} a_{\delta_1 r, \delta_2 r} t^r. \tag{13}\]

Polya ’22, Furstenberg ’67, Safonov ’00

If the series defines a rational function, then for every \(\delta = (\delta_1, \delta_2) \in \mathbb{Z}_{>0}^2 \), with \(\gcd(\delta_1, \delta_2) = 1 \), the \(\delta \)-diagonal \(f_\delta(t) \) is algebraic.
Laurent series of rational functions

Let \(p, q \in \mathbb{C}[x_1, x_2] \) coprime, \(f = p/q \), \(N(q) \subset \mathbb{R}^2 \) the Newton polytope of \(q \), \(v_0 \) be a vertex of \(N(q) \), \(v_1, v_2 \) the adjacent vertices, indexed counterclockwise.

Hence, \(N(q) \subset v_0 + \mathbb{R}_{>0} \cdot (v_1 - v_0) + \mathbb{R}_{>0} \cdot (v_2 - v_0) \).

So, \(f(x) \) has a convergent Laurent series expansion with support contained in \(x^w + C \) for suitable \(w \in \mathbb{Z}^2 \) [GKZ], where \(C \) is the cone

\[
C = \mathbb{R}_{\geq 0} (v_1 - v_0) + \mathbb{R}_{\geq 0} (v_2 - v_0).
\]

Key Lemma

The support of the series is not contained in any subcone of the form \(x^{w'} + C' \), with \(C' \) is properly contained in \(C \).
Laurent series of rational functions

Let \(p, q \in \mathbb{C}[x_1, x_2] \) coprime, \(f = p/q \), \(N(q) \subset \mathbb{R}^2 \) the Newton polytope of \(q \), \(v_0 \) be a vertex of \(N(q) \), \(v_1, v_2 \) the adjacent vertices, indexed counterclockwise.

Hence, \(N(q) \subset v_0 + \mathbb{R}_{>0} \cdot (v_1 - v_0) + \mathbb{R}_{>0} \cdot (v_2 - v_0) \).

So, \(f(x) \) has a convergent Laurent series expansion with support contained in \(x^w + C \) for suitable \(w \in \mathbb{Z}^2 \) [GKZ], where \(C \) is the cone

\[
C = \mathbb{R}_{\geq 0} \cdot (v_1 - v_0) + \mathbb{R}_{\geq 0} \cdot (v_2 - v_0).
\]

Key Lemma

The support of the series is not contained in any subcone of the form \(x^{w'} + C' \), with \(C' \) is properly contained in \(C \).
Laurent series of rational functions

Let \(p, q \in \mathbb{C}[x_1, x_2] \) coprime, \(f = p/q \), \(N(q) \subset \mathbb{R}^2 \) the Newton polytope of \(q \), \(v_0 \) be a vertex of \(N(q) \), \(v_1, v_2 \) the adjacent vertices, indexed counterclockwise.

Hence, \(N(q) \subset v_0 + \mathbb{R}_{>0} \cdot (v_1 - v_0) + \mathbb{R}_{>0} \cdot (v_2 - v_0) \).

So, \(f(x) \) has a convergent Laurent series expansion with support contained in \(x^w + \mathcal{C} \) for suitable \(w \in \mathbb{Z}^2 \) [GKZ], where \(\mathcal{C} \) is the cone

\[
\mathcal{C} = \mathbb{R}_{\geq 0} (v_1 - v_0) + \mathbb{R}_{\geq 0} (v_2 - v_0).
\]

Key Lemma

The support of the series is not contained in any subcone of the form \(x^{w'} + \mathcal{C}' \), with \(\mathcal{C}' \) is properly contained in \(\mathcal{C} \).
Laurent series of rational functions

Let \(p, q \in \mathbb{C}[x_1, x_2] \) coprime, \(f = p/q \), \(N(q) \subset \mathbb{R}^2 \) the Newton polytope of \(q \), \(v_0 \) be a vertex of \(N(q) \), \(v_1, v_2 \) the adjacent vertices, indexed counterclockwise.

Hence, \(N(q) \subset v_0 + \mathbb{R}_{>0} \cdot (v_1 - v_0) + \mathbb{R}_{>0} \cdot (v_2 - v_0) \).

So, \(f(x) \) has a convergent Laurent series expansion with support contained in \(x^w + \mathcal{C} \) for suitable \(w \in \mathbb{Z}^2 \) [GKZ], where \(\mathcal{C} \) is the cone

\[
\mathcal{C} = \mathbb{R}_{\geq 0} (v_1 - v_0) + \mathbb{R}_{>0} (v_2 - v_0).
\]

Key Lemma

The support of the series is not contained in any subcone of the form \(x^{w'} + \mathcal{C}' \), with \(\mathcal{C}' \) is properly contained in \(\mathcal{C} \).
Laurent series of rational functions

Let \(p, q \in \mathbb{C}[x_1, x_2] \) coprime, \(f = p/q \), \(N(q) \subset \mathbb{R}^2 \) the Newton polytope of \(q \), \(v_0 \) be a vertex of \(N(q) \), \(v_1, v_2 \) the adjacent vertices, indexed counterclockwise.

Hence, \(N(q) \subset v_0 + \mathbb{R}_{>0} \cdot (v_1 - v_0) + \mathbb{R}_{>0} \cdot (v_2 - v_0) \).

So, \(f(x) \) has a convergent Laurent series expansion with support contained in \(x^w + C \) for suitable \(w \in \mathbb{Z}^2 \) [GKZ], where \(C \) is the cone

\[
C = \mathbb{R}_{\geq 0} \cdot (v_1 - v_0) + \mathbb{R}_{\geq 0} \cdot (v_2 - v_0).
\]

Key Lemma

The support of the series is not contained in any subcone of the form \(x^{w'} + C' \), with \(C' \) is properly contained in \(C \).
Laurent series of rational functions

Let $p, q \in \mathbb{C}[x_1, x_2]$ coprime, $f = p/q$, $N(q) \subset \mathbb{R}^2$ the Newton polytope of q, v_0 be a vertex of $N(q)$, v_1, v_2 the adjacent vertices, indexed counterclockwise. Hence, $N(q) \subset v_0 + \mathbb{R}_{>0} \cdot (v_1 - v_0) + \mathbb{R}_{>0} \cdot (v_2 - v_0)$.

So, $f(x)$ has a convergent Laurent series expansion with support contained in $x^w + C$ for suitable $w \in \mathbb{Z}^2$ [GKZ], where C is the cone

$$C = \mathbb{R}_{\geq 0} (v_1 - v_0) + \mathbb{R}_{\geq 0} (v_2 - v_0).$$

Key Lemma

The support of the series is not contained in any subcone of the form $x^{w'} + C'$, with C' is properly contained in C.
Let $v(z) := \sum_{n=0}^{\infty} \frac{\prod_{i=1}^{r'} (p_i n)!}{\prod_{j=1}^{s} (q_j n)!} \ z^n$, $\sum_{i=1}^{r} p_i = \sum_{j=1}^{s} q_j$.

Using Beukers-Heckman ’89 it was shown by FRV ’03 that v defines an algebraic function if and only the height $d := s - r$, equals 1 and the coefficients A_n are integral for every $n \in \mathbb{N}$.

BH gave an explicit classification of all algebraic univariate hypergeometric series, from which [FRV, Bober] classified all integral factorial ratio sequences of height 1.

Assume that $\gcd(p_1, \ldots, p_r, q_1, \ldots, q_{r+1}) = 1$. Then there exist three infinite families for A_n:

1. $\frac{(a+b)n)!}{(a)n!(b)n!}, \quad \gcd(a, b) = 1$,
2. $\frac{(2(a+b)n)!}{((a+b)n)!((2b)n)!} \frac{(b)n!}{(a)n!(2b)n!}, \quad \gcd(a, b) = 1$,
3. $\frac{(a)n!}{(a)n!((a+b)n)!} \frac{(2b)n!}{(2b)n!((a+b)n)!}, \quad \gcd(a, b) = 1$,

and 52 sporadic cases.
Let \(v(z) := \sum_{n=0}^{\infty} \frac{\prod_{i=1}^{r'} (p_i n)!}{\prod_{j=1}^{s} (q_j n)!} \ z^n, \ \sum_{i=1}^{r} p_i = \sum_{j=1}^{s} q_j \).

- Using Beukers-Heckman '89 it was shown by FRV '03 that \(v \) defines an algebraic function if and only the \textit{height} \(d := s - r \), equals 1 and the coefficients \(A_n \) are integral for every \(n \in \mathbb{N} \).

- BH gave an explicit classification of all algebraic univariate hypergeometric series, from which [FRV, Bober] classified all integral factorial ratio sequences of height 1.

- Assume that \(\gcd(p_1, \ldots, p_r, q_1, \ldots, q_{r+1}) = 1 \). Then there exist three infinite families for \(A_n \):
 1. \(\frac{((a+b) n)!}{(a n)! (b n)!} ; \quad \gcd(a, b) = 1 \),
 2. \(\frac{(2(a+b) n)!}{((a+b) n)! (2 b n)!} ; \quad \gcd(a, b) = 1 \),
 3. \(\frac{(2 a n)!}{(a n)! (2 b n)!} ; \quad \gcd(a, b) = 1 \),

and 52 sporadic cases.
Let \(v(z) := \sum_{n=0}^{\infty} \frac{\prod'_{i=1} (p_i n)!}{\prod_{j=1}^{s} (q_j n)!} z^n \), \(\sum_{i=1}^{r} p_i = \sum_{j=1}^{s} q_j \).

- Using Beukers-Heckman ’89 it was shown by FRV ’03 that \(v \) defines an algebraic function if and only the \(\text{height} \ d := s - r \), equals 1 and the coefficients \(A_n \) are integral for every \(n \in \mathbb{N} \).

- BH gave an explicit classification of all algebraic univariate hypergeometric series, from which [FRV, Bober] classified all integral factorial ratio sequences of height 1.

- Assume that \(\gcd(p_1, \ldots, p_r, q_1, \ldots, q_{r+1}) = 1 \). Then there exist three infinite families for \(A_n \):
 1. \(\frac{((a+b) n)!}{(a n)! (b n)!} \), \(\gcd(a, b) = 1 \),
 2. \(\frac{(2(a+b) n)! (b n)!}{((a+b) n)! (2b n)! (a n)!} \), \(\gcd(a, b) = 1 \),
 3. \(\frac{(2a n)! (2b n)!}{(a n)! (b n)! ((a+b) n)!} \), \(\gcd(a, b) = 1 \),

and 52 sporadic cases.
Algebraic hypergeometric functions in one variable

Let \(v(z) := \sum_{n=0}^{\infty} \frac{\prod_{i=1}^{r} (p_{i} n)!}{\prod_{j=1}^{s} (q_{j} n)!} z^{n}, \) \(\sum_{i=1}^{r} p_{i} = \sum_{j=1}^{s} q_{j}. \)

- Using Beukers-Heckman ’89 it was shown by FRV ’03 that \(v \) defines an algebraic function if and only the height \(d := s - r \), equals 1 and the coefficients \(A_{n} \) are integral for every \(n \in \mathbb{N} \).
- BH gave an explicit classification of all algebraic univariate hypergeometric series, from which [FRV, Bober] classified all integral factorial ratio sequences of height 1.
- Assume that \(\gcd(p_{1}, \ldots, p_{r}, q_{1}, \ldots, q_{r+1}) = 1 \). Then there exist three infinite families for \(A_{n} \):
 1. \(\frac{((a+b) n)!}{(a n)! (b n)!}, \) \(\gcd(a, b) = 1, \)
 2. \(\frac{(2(a+b) n)! \cdot (b n)!}{((a+b) n)! (2 b n)! (a n)!}, \) \(\gcd(a, b) = 1, \)
 3. \(\frac{(2 an)! \cdot (2 b n)!}{(a n)! (b n)! ((a+b) n)!}, \) \(\gcd(a, b) = 1, \)
and 52 sporadic cases.
Algebraic hypergeometric functions in one variable

Let \(v(z) := \sum_{n=0}^{\infty} \frac{\prod_{i=1}^{r} (p_i n)!}{\prod_{j=1}^{s} (q_j n)!} z^n, \sum_{i=1}^{r} p_i = \sum_{j=1}^{s} q_j \).

- Using Beukers-Heckman ‘89 it was shown by FRV ‘03 that \(v \) defines an algebraic function if and only the height \(d := s - r \), equals 1 and the coefficients \(A_n \) are integral for every \(n \in \mathbb{N} \).
- BH gave an explicit classification of all algebraic univariate hypergeometric series, from which [FRV, Bober] classified all integral factorial ratio sequences of height 1.
- Assume that \(\gcd(p_1, \ldots, p_r, q_1, \ldots, q_{r+1}) = 1 \). Then there exist three infinite families for \(A_n \):
 1. \(\frac{((a+b) n)!}{(an)! (b n)!}, \gcd(a, b) = 1 \),
 2. \(\frac{(2(a+b) n)! (b n)!}{((a+b) n)! (2b n)! (an)!}, \gcd(a, b) = 1 \),
 3. \(\frac{(2an)! (2b n)!}{(an)! (b n)! ((a+b) n)!}, \gcd(a, b) = 1 \),
- and 52 sporadic cases.
Let $v(z) := \sum_{n=0}^{\infty} \frac{\prod_{i=1}^{s} (p_i n)!}{\prod_{j=1}^{r} (q_j n)!} z^n$, $\sum_{i=1}^{r} p_i = \sum_{j=1}^{s} q_j$.

- Using Beukers-Heckman ’89 it was shown by FRV ’03 that v defines an algebraic function if and only the height $d := s - r$, equals 1 and the coefficients A_n are integral for every $n \in \mathbb{N}$.

- BH gave an explicit classification of all algebraic univariate hypergeometric series, from which [FRV, Bober] classified all integral factorial ratio sequences of height 1.

- Assume that $\gcd(p_1, \ldots, p_r, q_1, \ldots, q_{r+1}) = 1$. Then there exist three infinite families for A_n:

 1. $\frac{((a+b) n)!}{(a n)! (b n)!}$, $\gcd(a, b) = 1$,
 2. $\frac{(2(a+b) n)! (b n)!}{((a+b) n)! (2b n)! (a n)!}$, $\gcd(a, b) = 1$,
 3. $\frac{(2a n)! (2b n)!}{(a n)! (b n)! ((a+b) n)!}$, $\gcd(a, b) = 1$,

and 52 sporadic cases.
Algebraic hypergeometric functions in one variable

Let \(v(z) := \sum_{n=0}^{\infty} \frac{\prod_{i=1}^{r} (p_i n)!}{\prod_{j=1}^{s} (q_j n)!} z^n, \sum_{i=1}^{r} p_i = \sum_{j=1}^{s} q_j. \)

- Using Beukers-Heckman ’89 it was shown by FRV ’03 that \(v \) defines an algebraic function if and only the \(\text{height} \ d := s - r, \) equals 1 and the coefficients \(A_n \) are integral for every \(n \in \mathbb{N}. \)

- BH gave an explicit classification of all algebraic univariate hypergeometric series, from which [FRV, Bober] classified all integral factorial ratio sequences of height 1.

- Assume that \(\gcd(p_1, \ldots, p_r, q_1, \ldots, q_{r+1}) = 1. \) Then there exist three infinite families for \(A_n: \)
 1. \(\frac{((a+b) n)!}{(an)! (bn)!}, \quad \gcd(a, b) = 1, \)
 2. \(\frac{(2(a+b) n)! (bn)!}{((a+b) n)! (2bn)! (an)!}, \quad \gcd(a, b) = 1, \)
 3. \(\frac{(2an)! (2bn)!}{(an)! (bn)! ((a+b) n)!}, \quad \gcd(a, b) = 1, \)

and 52 sporadic cases.
Theorem M

In our context, (dehomogenized) series of the form

\[u(z) = \sum_{n=0}^{\infty} \frac{\prod_{i=1}^{r} (p_i n + k_i)!}{\prod_{j=1}^{s} (q_j n)!} z^n, \quad k_i \in \mathbb{N} \text{ occur (with } \sum_{i=1}^{r} p_i = \sum_{j=1}^{s} q_j). \]

Calling \(A_n = \frac{\prod_{i=1}^{r} (p_i n)!}{\prod_{j=1}^{s} (q_j n)!} \), the coefficients of \(u \) equal \(h(n)A_n \), with \(h \) a polynomial.

(u) The series \(u(z) \) is algebraic if and only if \(v(z) \) is algebraic.

(ii) If \(u \) is rational then \(A_n = 1 \) for all \(n \) and \(v(z) = \frac{1}{1-z} \).

Proof uses monodromy as well as number theoretic arguments.
Theorem M

In our context, (dehomogenized) series of the form
\[u(z) = \sum_{n=0}^{\infty} \frac{\prod_{i=1}^{r} (p_i n + k_i)!}{\prod_{j=1}^{s} (q_j n)!} z^n, \quad k_i \in \mathbb{N} \] occur (with \(\sum_{i=1}^{r} p_i = \sum_{j=1}^{s} q_j \)).

Calling \(A_n = \frac{\prod_{i=1}^{r} (p_i n)!}{\prod_{j=1}^{s} (q_j n)!} \), the coefficients of \(u \) equal \(h(n)A_n \), with \(h \) a polynomial.

Theorem

\[u(z) := \sum_{n \geq 0} h(n)A_n z^n, \quad v(z) := \sum_{n \geq 0} A_n z^n, \]

(i) The series \(u(z) \) is algebraic if and only if \(v(z) \) is algebraic.
(ii) If \(u \) is rational then \(A_n = 1 \) for all \(n \) and \(v(z) = \frac{1}{1-z} \).

Proof uses monodromy as well as number theoretic arguments.
So far, so good

...but how we figured out the statement of the general result and how to guess the corresponding statement in dimensions 3 and higher?
Following [Gel’fand, Kapranov and Zelevinsky ’87,’89,’90] we associate to a matrix \(A \in \mathbb{Z}^{d \times n} \) and a vector \(\beta \in \mathbb{C}^d \) a left ideal in the Weyl algebra in \(n \) variables:

The \(A \)-hypergeometric system with parameter \(\beta \) is the left ideal \(H_A(\beta) \) in the Weyl algebra \(D_n \) generated by the toric operators \(\partial^u - \partial^v \), for all \(u, v \in \mathbb{N}^n \) such that \(Au = Av \), and the Euler operators \(\sum_{j=1}^{n} a_{ij} z_j \partial_j - \beta_i \) for \(i = 1, \ldots, d \).

Note that the binomial operators generate the whole toric ideal \(I_A \).

- The Euler operators impose \(A \)-homogeneity to the solutions
- The toric operators impose recurrences on the coefficients of (Puiseux) series solutions.
A-hypergeometric systems

Following [Gel’fand, Kapranov and Zelevinsky ’87,’89,’90] we associate to a matrix $A \in \mathbb{Z}^{d \times n}$ and a vector $\beta \in \mathbb{C}^d$ a left ideal in the Weyl algebra in n variables:

The **A-hypergeometric system with parameter β** is the left ideal $H_A(\beta)$ in the Weyl algebra D_n generated by the **toric operators** $\partial^u - \partial^v$, for all $u, v \in \mathbb{N}^n$ such that $Au = Av$, and the **Euler operators** $\sum_{j=1}^n a_{ij}z_j \partial_j - \beta_i$ for $i = 1, \ldots, d$.

Note that the binomial operators generate the whole toric ideal I_A.

- The **Euler operators** impose A-homogeneity to the solutions
- The **toric operators** impose recurrences on the coefficients of (Puiseux) series solutions.
A-hypergeometric systems

Following [Gel’fand, Kapranov and Zelevinsky ’87,’89,’90] we associate to a matrix $A \in \mathbb{Z}^{d \times n}$ and a vector $\beta \in \mathbb{C}^d$ a left ideal in the Weyl algebra in n variables:

The A-hypergeometric system with parameter β is the left ideal $H_A(\beta)$ in the Weyl algebra D_n generated by the toric operators $\partial^u - \partial^v$, for all $u, v \in \mathbb{N}^n$ such that $Au = Av$, and the Euler operators $\sum_{j=1}^n a_{ij}z_j \partial_j - \beta_i$ for $i = 1, \ldots, d$.

Note that the binomial operators generate the whole toric ideal I_A.

- The Euler operators impose A-homogeneity to the solutions
- The toric operators impose recurrences on the coefficients of (Puiseux) series solutions.
A-hypergeometric systems

Following [Gel’fand, Kapranov and Zelevinsky ’87,’89,’90] we associate to a matrix $A \in \mathbb{Z}^{d\times n}$ and a vector $\beta \in \mathbb{C}^d$ a left ideal in the Weyl algebra in n variables:

The A-hypergeometric system with parameter β is the left ideal $H_A(\beta)$ in the Weyl algebra D_n generated by the toric operators $\partial^u - \partial^v$, for all $u, v \in \mathbb{N}^n$ such that $Au = Av$, and the Euler operators $\sum_{j=1}^n a_{ij}z_j \partial_j - \beta_i$ for $i = 1, \ldots, d$.

Note that the binomial operators generate the whole toric ideal I_A.

- The Euler operators impose A-homogeneity to the solutions.
- The toric operators impose recurrences on the coefficients of (Puiseux) series solutions.
Following [Gel’fand, Kapranov and Zelevinsky ’87,’89,’90] we associate to a matrix $A \in \mathbb{Z}^{d \times n}$ and a vector $\beta \in \mathbb{C}^d$ a left ideal in the Weyl algebra in n variables:

The A-hypergeometric system with parameter β is the left ideal $H_A(\beta)$ in the Weyl algebra D_n generated by the toric operators $\partial^u - \partial^v$, for all $u, v \in \mathbb{N}^n$ such that $Au = Av$, and the Euler operators $\sum_{j=1}^n a_{ij} z_j \partial_j - \beta_i$ for $i = 1, \ldots, d$.

Note that the binomial operators generate the whole toric ideal I_A.

- The Euler operators impose A-homogeneity to the solutions
- The toric operators impose recurrences on the coefficients of (Puiseux) series solutions.
Gauss functions, revisited \textbf{GKZ} style

Consider the configuration in \mathbb{R}^3

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}.$$

$$\ker_{\mathbb{Z}}(A) = \langle (1, 1, -1, -1) \rangle$$

$$(1, 1, -1, -1) = (1, 1, 0, 0) - (0, 0, 1, 1)$$

The following GKZ-hypergeometric system of equations in four variables x_1, x_2, x_3, x_4 is a nice encoding for Gauss equation in one variable:

$$\begin{cases}
 (\partial_1 \partial_2 - \partial_3 \partial_4)(\varphi) = 0 \\
 (x_1 \partial_1 + x_2 \partial_2 + x_3 \partial_3 + x_4 \partial_4)(\varphi) = \beta_1 \varphi \\
 (x_2 \partial_2 + x_3 \partial_3)(\varphi) = \beta_2 \varphi \\
 (x_2 \partial_2 + x_4 \partial_4)(\varphi) = \beta_3 \varphi
\end{cases}$$
Gauss functions, revisited \textbf{GKZ} style

Consider the configuration in \mathbb{R}^3

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}. $$

$$\text{ker}_\mathbb{Z}(A) = \langle (1, 1, -1, -1) \rangle \quad (1, 1, -1, -1) = (1, 1, 0, 0) - (0, 0, 1, 1)$$

The following GKZ-hypergeometric system of equations in four variables x_1, x_2, x_3, x_4 is a nice encoding for Gauss equation in one variable:

$$\begin{cases}
(\partial_1 \partial_2 - \partial_3 \partial_4) (\varphi) = 0 \\
(x_1 \partial_1 + x_2 \partial_2 + x_3 \partial_3 + x_4 \partial_4) (\varphi) = \beta_1 \varphi \\
(x_2 \partial_2 + x_3 \partial_3) (\varphi) = \beta_2 \varphi \\
(x_2 \partial_2 + x_4 \partial_4) (\varphi) = \beta_3 \varphi
\end{cases}$$
Gauss functions, revisited GKZ style

Consider the configuration in \(\mathbb{R}^3 \)

\[
A = \begin{pmatrix}
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 \\
\end{pmatrix}.
\]

\(\ker_{\mathbb{Z}}(A) = \langle (1, 1, -1, -1) \rangle \) \((1, 1, -1, -1) = (1, 1, 0, 0) - (0, 0, 1, 1) \)

• The following GKZ-hypergeometric system of equations in four variables \(x_1, x_2, x_3, x_4 \) is a nice encoding for Gauss equation in one variable:

\[
\begin{cases}
(\partial_1 \partial_2 - \partial_3 \partial_4) (\varphi) = 0 \\
(x_1 \partial_1 + x_2 \partial_2 + x_3 \partial_3 + x_4 \partial_4) (\varphi) = \beta_1 \varphi \\
(x_2 \partial_2 + x_3 \partial_3) (\varphi) = \beta_2 \varphi \\
(x_2 \partial_2 + x_4 \partial_4) (\varphi) = \beta_3 \varphi
\end{cases}
\]
Gauss functions, revisited **GKZ** style

\[
\begin{align*}
\left(\partial_1 \partial_2 - \partial_3 \partial_4 \right) (\varphi) &= 0 \\
\left(x_1 \partial_1 + x_2 \partial_2 + x_3 \partial_3 + x_4 \partial_4 \right) (\varphi) &= \beta_1 \varphi \\
\left(x_2 \partial_2 + x_3 \partial_3 \right) (\varphi) &= \beta_2 \varphi \\
\left(x_2 \partial_2 + x_4 \partial_4 \right) (\varphi) &= \beta_3 \varphi
\end{align*}
\]

(14)

Given any \((\beta_1, \beta_2, \beta_3)\) and \(v \in \mathbb{C}^n\) such that \(A \cdot v = (\beta_1, \beta_2, \beta_3)\) and \(v_1 = 0\), any solution \(\varphi\) of (14) can be written as

\[\varphi(x) = x^v f \left(\frac{x_1 x_2}{x_3 x_4} \right),\]

where \(f(z)\) satisfies Gauss equation with

\[\alpha = v_2, \ \beta = v_3, \ \gamma = v_4 + 1.\]
Given any \((\beta_1, \beta_2, \beta_3)\) and \(\nu \in \mathbb{C}^n\) such that \(A \cdot \nu = (\beta_1, \beta_2, \beta_3)\) and \(\nu_1 = 0\), any solution \(\varphi\) of (14) can be written as

\[
\varphi(x) = x^{\nu} f \left(\frac{x_1 x_2}{x_3 x_4} \right),
\]

where \(f(z)\) satisfies Gauss equation with

\[
\alpha = \nu_2, \quad \beta = \nu_3, \quad \gamma = \nu_4 + 1.
\]
Gauss functions, revisited **GKZ** style

\[
\begin{align*}
(\partial_1 \partial_2 - \partial_3 \partial_4) (\varphi) &= 0 \\
(x_1 \partial_1 + x_2 \partial_2 + x_3 \partial_3 + x_4 \partial_4) (\varphi) &= \beta_1 \varphi \\
(x_2 \partial_2 + x_3 \partial_3) (\varphi) &= \beta_2 \varphi \\
(x_2 \partial_2 + x_4 \partial_4) (\varphi) &= \beta_3 \varphi
\end{align*}
\]

Given any \((\beta_1, \beta_2, \beta_3)\) and \(\mathbf{v} \in \mathbb{C}^n\) such that \(A \cdot \mathbf{v} = (\beta_1, \beta_2, \beta_3)\) and \(v_1 = 0\), any solution \(\varphi\) of (14) can be written as

\[
\varphi(x) = x^\mathbf{v} f \left(\frac{x_1 x_2}{x_3 x_4} \right),
\]

where \(f(z)\) satisfies Gauss equation with

\[
\alpha = v_2, \quad \beta = v_3, \quad \gamma = v_4 + 1.
\]
A-hypergeometric systems

Some features

- A-hypergeometric systems are homogeneous versions of classical hypergeometric systems in \(n - d \) variables (\(d = \text{rank}(A) \)).
- Combinatorially defined in terms of configurations.
- Closely related to toric geometry.
- One may use algorithmic and computational techniques [Saito, Sturmfels, Takayama ’99].
- \(H_A(\beta) \) is always holonomic and it has regular singularities iff \(A \) is regular [GKZ, Adolphson, Hotta, Schulze–Walther].
- The singular locus of the hypergeometric \(D_n \)-module \(D_n/H_A(\beta) \) equals the zero locus of the principal \(A \)-determinant \(E_A \), whose irreducible factors are the sparse discriminants \(D_A' \) corresponding to the facial subsets \(A' \) of \(A \) [GKZ] including \(D_A \).
A-hypergeometric systems

Some features

- A-hypergeometric systems are **homogeneous versions** of classical hypergeometric systems in $n - d$ variables ($d = \text{rank}(A)$).
- Combinatorially defined in terms of configurations.
- Closely related to toric geometry.
- One may use algorithmic and computational techniques [Saito, Sturmfels, Takayama ’99].
- $H_A(\beta)$ is always **holonomic** and it has regular singularities iff A is regular [GKZ, Adolphson, Hotta, Schulze–Walther].
- The **singular locus** of the hypergeometric D_n-module $D_n / H_A(\beta)$ equals the zero locus of the **principal A-determinant** E_A, whose irreducible factors are the **sparse discriminants** $D_{A'}$ corresponding to the **facial subsets** A' of A [GKZ] **including** D_A.
A-hypergeometric systems

Some features

- A-hypergeometric systems are *homogeneous versions* of classical hypergeometric systems *in* \(n - d\) variables (\(d = \text{rank}(A)\)).

- Combinatorially defined in terms of configurations.

- Closely related to toric geometry.

- One may use algorithmic and computational techniques [Saito, Sturmfels, Takayama '99].

- \(H_A(\beta)\) is always holonomic and it has regular singularities iff \(A\) is regular [GKZ, Adolphson, Hotta, Schulze–Walther]

- The *singular locus* of the hypergeometric \(D_n\)-module \(D_n/H_A(\beta)\) equals the zero locus of the *principal* \(A\)-determinant \(E_A\), whose irreducible factors are the *sparse discriminants* \(D_{A'}\) corresponding to the *facial subsets* \(A'\) of \(A\) [GKZ] including \(D_A\).
A-hypergeometric systems

Some features

- **A-hypergeometric systems** are **homogeneous versions** of **classical hypergeometric systems in** \(n - d \) **variables** \((d = \text{rank}(A))\).

- **Combinatorially defined in terms of configurations.**

- **Closely related to toric geometry.**

- One may use algorithmic and computational techniques \([\text{Saito, Sturmfels, Takayama '99}]\).

- \(H_A(\beta) \) is always **holonomic** and it has regular singularities iff \(A \) is regular \([\text{GKZ, Adolphson, Hotta, Schulze–Walther}]\).

- The singular locus of the hypergeometric \(D_n \)-module \(D_n / H_A(\beta) \) equals the **zero locus** of the **principal A-determinant** \(E_A \), whose irreducible factors are the **sparse discriminants** \(D_{A'} \) corresponding to the **facial subsets** \(A' \) of \(A \) \([\text{GKZ}]\) **including** \(D_A \).
A-hypergeometric systems

Some features

- A-hypergeometric systems are **homogeneous versions** of classical hypergeometric systems in \(n - d \) variables (\(d = \text{rank}(A) \)).

- Combinatorially defined in terms of configurations.

- Closely related to toric geometry.

- One may use algorithmic and computational techniques [Saito, Sturmfels, Takayama ’99].

- \(H_A(\beta) \) is always holonomic and it has regular singularities iff \(A \) is regular [GKZ, Adolphson, Hotta, Schulze–Walther]

- The **singular locus** of the hypergeometric \(D_n \)-module \(D_n/H_A(\beta) \) equals the zero locus of the principal \(A \)-determinant \(E_A \), whose irreducible factors are the **sparse discriminants** \(D_{A'} \) corresponding to the **facial subsets** \(A' \) of \(A \) [GKZ] **including** \(D_A \).
Some features

- \(A\)-hypergeometric systems are \textit{homogeneous versions} of classical hypergeometric systems in \(n - d\) variables \((d = \text{rank}(A))\).

- Combinatorially defined in terms of configurations.

- Closely related to toric geometry.

- One may use algorithmic and computational techniques [Saito, Sturmfels, Takayama ’99].

- \(H_A(\beta)\) is always \textit{holonomic} and it has regular singularities iff \(A\) is \textit{regular} [GKZ, Adolphson, Hotta, Schulze–Walther]

- The singular locus of the hypergeometric \(D_n\)-module \(D_n/H_A(\beta)\) equals the zero locus of the principal \(A\)-determinant \(E_A\), whose irreducible factors are the \textit{sparse discriminants} \(D_{A'}\) corresponding to the facial subsets \(A'\) of \(A\) [GKZ] \textit{including} \(D_A\).
A-hypergeometric systems

Some features

- A-hypergeometric systems are homogeneous versions of classical hypergeometric systems in $n - d$ variables ($d = \text{rank}(A)$).
- Combinatorially defined in terms of configurations.
- Closely related to toric geometry.
- One may use algorithmic and computational techniques [Saito, Sturmfels, Takayama '99].
- $H_A(\beta)$ is always holonomic and it has regular singularities iff A is regular [GKZ, Adolphson, Hotta, Schulze–Walther].
- The singular locus of the hypergeometric D_n-module $D_n/H_A(\beta)$ equals the zero locus of the principal A-determinant E_A, whose irreducible factors are the sparse discriminants $D_{A'}$ corresponding to the facial subsets A' of A [GKZ] including D_A.

A. Dickenstein (U. Buenos Aires)
Theorems/Conjectures about A-hypergeometric systems

GKZ-definition of multivariate hypergeometric functions gives a combinatorial meaning to parameters and a geometric meaning to solutions.

Rational A-hypergeometric functions

- We studied the constraints imposed on a regular A by the existence of stable rational A-hypergeometric functions, essentially functions with singularities along the discriminant locus D.
- We proved that “general” configurations do NOT admit such rational functions [Cattani–D.–Sturmfels '01] and gave a conjectural characterization of the configurations and of the shape of the rational functions in terms of essential Cayley configurations and toric residues.
- All codimension 1 configurations [CDS '01], dimension 1 Lawrence configurations [CDS '02] and 2 [CDS '01], Lawrence configurations [CDRV '09] for families in \mathbb{P}^7 [Cattani–D. '04], codimension 2, always...
Theorems/Conjectures about A-hypergeometric systems

GKZ-definition of multivariate hypergeometric functions gives a combinatorial meaning to parameters and a geometric meaning to solutions.

Rational A-hypergeometric functions

- We studied the constraints imposed on a regular A by the existence of stable rational A-hypergeometric functions, essentially functions with singularities along the discriminant locus D_A.
- We proved that "general" configurations do NOT admit such rational functions [Cattani–D.–Sturmfels '01] and gave a conjectural characterization of the configurations and of the shape of the rational functions in terms of essential Cayley configurations and toric residues.
- All codimension 1 configurations [CDS '01], dimension 1 Lawrence configurations [CDS '02], and codimension 2 Lawrence configurations [CDRV '09] have been found in \mathbb{P}^7 [Cattani–D. '04].
- Codimension 2 configurations [Cattani–D. '04] have been found in \mathbb{P}^7 [Cattani–D. '04].
Theorems/Conjectures about A-hypergeometric systems

GKZ-definition of multivariate hypergeometric functions gives a combinatorial meaning to parameters and a geometric meaning to solutions.

Rational A-hypergeometric functions

- We studied the constraints imposed on a regular A by the existence of stable rational A-hypergeometric functions; essentially, functions with singularities along the discriminant locus D_A.

- We proved that “general” configurations A do NOT admit such rational functions [Cattani–D.–Sturmfels ’01] and gave a conjectural characterization of the configurations and of the shape of the rational functions in terms of essential Cayley configurations and toric residues.

- All codimension 1 configurations [CDS ’01], dimension 1 [Cattani–D’Andrea–D. ’99] and 2 [CDS ’01], Lawrence configurations [CDS ’02], fourfolds in \mathbb{P}^7 [Cattani–D. ’04], codimension 2 [CDRV ’09].
Theorems/Conjectures about A-hypergeometric systems

GKZ-definition of multivariate hypergeometric functions gives a combinatorial meaning to parameters and a geometric meaning to solutions.

Rational A-hypergeometric functions

- We studied the constraints imposed on a regular A by the existence of stable rational A-hypergeometric functions; essentially, functions with singularities along the discriminant locus D_A.

- We proved that “general” configurations A do NOT admit such rational functions [Cattani–D.–Sturmfels ’01] and gave a conjectural characterization of the configurations and of the shape of the rational functions in terms of essential Cayley configurations and toric residues.

- All codimension 1 configurations [CDS ’01], dimension 1 [Cattani–D’Andrea–D. ’99] and 2 [CDS ’01], Lawrence configurations [CDS ’02], fourfolds in \mathbb{P}^7 [Cattani–D. ’04], codimension 2 [CDRV ’09].
Theorems/Conjectures about A-hypergeometric systems

GKZ-definition of multivariate hypergeometric functions gives a combinatorial meaning to parameters and a geometric meaning to solutions.

Rational A-hypergeometric functions

- We studied the constraints imposed on a regular A by the existence of stable rational A-hypergeometric functions; essentially, functions with singularities along the discriminant locus D_A.

- We proved that “general” configurations A do NOT admit such rational functions [Cattani–D.–Sturmfels ’01] and gave a conjectural characterization of the configurations and of the shape of the rational functions in terms of essential Cayley configurations and toric residues.

- All codimension 1 configurations [CDS ’01], dimension 1 [Cattani–D’Andrea–D. ’99] and 2 [CDS ’01], Lawrence configurations [CDS ’02], fourfolds in \mathbb{P}^7 [Cattani–D. ’04], codimension 2 [CDRV ’09].
Theorems/Conjectures about A-hypergeometric systems

GKZ-definition of multivariate hypergeometric functions gives a combinatorial meaning to parameters and a geometric meaning to solutions.

Rational A-hypergeometric functions

- We studied the constraints imposed on a regular A by the existence of stable rational A-hypergeometric functions; essentially, functions with singularities along the discriminant locus D_A.

- We proved that “general” configurations A do NOT admit such rational functions [Cattani–D.–Sturmfels ’01] and gave a conjectural characterization of the configurations and of the shape of the rational functions in terms of essential Cayley configurations and toric residues.

- All codimension 1 configurations [CDS ’01], dimension 1 [Cattani–D’Andrea–D. ’99] and 2 [CDS ’01], Lawrence configurations [CDS ’02], fourfolds in \mathbb{P}^7 [Cattani–D. ’04], codimension 2 [CDRV ’09].
A configuration $A \subset \mathbb{Z}^d$ is said to be a Cayley configuration if there exist vector configurations A_1, \ldots, A_{k+1} in \mathbb{Z}^r such that –up to affine equivalence–

$$A = \{e_1\} \times A_1 \cup \cdots \cup \{e_{k+1}\} \times A_{k+1} \subset \mathbb{Z}^{k+1} \times \mathbb{Z}^r,$$

(15)

where e_1, \ldots, e_{k+1} is the standard basis of \mathbb{Z}^{k+1}.

A Cayley configuration is a Lawrence configuration if all the configurations A_i consist of exactly two points.
Cayley configurations

Definition

A configuration $A \subset \mathbb{Z}^d$ is said to be a **Cayley configuration** if there exist vector configurations A_1, \ldots, A_{k+1} in \mathbb{Z}^r such that –up to affine equivalence–

$$A = \{e_1\} \times A_1 \cup \cdots \cup \{e_{k+1}\} \times A_{k+1} \subset \mathbb{Z}^{k+1} \times \mathbb{Z}^r,$$

where e_1, \ldots, e_{k+1} is the standard basis of \mathbb{Z}^{k+1}.

A Cayley configuration is a **Lawrence configuration** if all the configurations A_i consist of exactly two points.
Definition

A configuration $A \subset \mathbb{Z}^d$ is said to be a **Cayley configuration** if there exist vector configurations A_1, \ldots, A_{k+1} in \mathbb{Z}^r such that –up to affine equivalence–

$$A = \{e_1\} \times A_1 \cup \cdots \cup \{e_{k+1}\} \times A_{k+1} \subset \mathbb{Z}^{k+1} \times \mathbb{Z}^r,$$

where e_1, \ldots, e_{k+1} is the standard basis of \mathbb{Z}^{k+1}.

A Cayley configuration is a **Lawrence** configuration if all the configurations A_i consist of exactly **two** points.
A Cayley configuration is \textit{essential} if $k = r$ and the Minkowski sum \(\sum_{i \in I} A_i \) has affine dimension at least \(|I|\) for every proper subset \(I \) of \(\{1, \ldots, r + 1\} \).

For a codimension-two essential Cayley configuration \(A \), \(r \) of the configurations \(A_i \), say \(A_1, \ldots, A_r \), must consist of two vectors and the remaining one, \(A_{r+1} \), must consist of three vectors.

To an essential Cayley configuration we associate a family of \(r + 1 \) generic polynomials in \(r \) variables with supports \(A_i \), such that any \(r \) of them intersect in a positive number of points. Adding local residues over this points gives a rational function!
Cayley configurations

Definition

A Cayley configuration is **essential** if $k = r$ and the Minkowski sum $\sum_{i \in I} A_i$ has affine dimension at least $|I|$ for every proper subset I of $\{1, \ldots, r + 1\}$.

- For a **codimension-two** essential Cayley configuration A, r of the configurations A_i, say A_1, \ldots, A_r, must consist of two vectors and the remaining one, A_{r+1}, must consist of three vectors.

- To an essential Cayley configuration we associate a family of $r + 1$ generic polynomials in r variables with supports A_i, such that any r of them intersect in a positive number of points. Adding local residues over this points gives a rational function!
A Cayley configuration is essential if $k = r$ and the Minkowski sum $\sum_{i \in I} A_i$ has affine dimension at least $|I|$ for every proper subset I of $\{1, \ldots, r + 1\}$.

- For a codimension-two essential Cayley configuration A, r of the configurations A_i, say A_1, \ldots, A_r, must consist of two vectors and the remaining one, A_{r+1}, must consist of three vectors.

- To an essential Cayley configuration we associate a family of $r + 1$ generic polynomials in r variables with supports A_i, such that any r of them intersect in a positive number of points. Adding local residues over this points gives a rational function!
Summarizing

Our statement of bivariate hypergeometric series is the translation of the general combinatorial structure on the A-side (which also provides statements for the generalization to any number of variables).

The study of A-hypergeometric systems provides a general framework under which we can treat many systems that had been studied separately in the literature.

Questions

- Describe all algebraic Laurent series solutions for Cayley configurations (in progress).
- How to prove the conjectures beyond dimension/codimension two? There exists a characterization of normal configurations A for which all solutions are algebraic ([Beukers '11]), certainly for non-integer parameter vectors β. New techniques are needed.
Summarizing

Our statement of bivariate hypergeometric series is the translation of the general combinatorial structure on the A-side (which also provides statements for the generalization to any number of variables).

The study of A-hypergeometric systems provides a general framework under which we can treat many systems that had been studied separately in the literature.

Questions

- Describe all algebraic Laurent series solutions for Cayley configurations (in progress).
- How to prove the conjectures beyond dimension/codimension two? There exists a characterization of normal configurations \(\mathbf{a} \) for which all solutions are algebraic ([Beukers '10]), certainly for non-integer parameter vectors \(\mathbf{a} \). New techniques are needed.
Summarizing

Our statement of bivariate hypergeometric series is the translation of the general combinatorial structure on the A-side (which also provides statements for the generalization to any number of variables).

The study of A-hypergeometric systems provides a general framework under which we can treat many systems that had been studied separately in the literature.

Questions

- Describe all algebraic Laurent series solutions for Cayley configurations (in progress).
- How to prove the conjectures beyond dimension/codimension two? There exists a characterization of normal configurations α for which all solutions are algebraic ([Beukers '10]), certainly for non-integer parameter vectors λ. New techniques are needed.
Summarizing

Our statement of bivariate hypergeometric series is the translation of the general combinatorial structure on the A-side (which also provides statements for the generalization to any number of variables).

The study of A-hypergeometric systems provides a general framework under which we can treat many systems that had been studied separately in the literature.

Questions

- Describe all algebraic Laurent series solutions for Cayley configurations (in progress).
- How to prove the conjectures beyond dimension/codimension two? There exists a characterization of normal configurations A for which all solutions are algebraic ([Beukers '10]), certainly for non-integer parameter vectors β. New techniques are needed.
Summarizing

Our statement of bivariate hypergeometric series is the translation of the general combinatorial structure on the A-side (which also provides statements for the generalization to any number of variables).

The study of A-hypergeometric systems provides a general framework under which we can treat many systems that had been studied separately in the literature.

Questions

- Describe all algebraic Laurent series solutions for Cayley configurations (in progress).
- How to prove the conjectures beyond dimension/codimension two? There exists a characterization of normal configurations A for which all solutions are algebraic ([Beukers '10]), certainly for non integer parameter vectors β. New techniques are needed.
Summarizing

Our statement of bivariate hypergeometric series is the translation of the general combinatorial structure on the A-side (which also provides statements for the generalization to any number of variables).

The study of A-hypergeometric systems provides a general framework under which we can treat many systems that had been studied separately in the literature.

Questions

- Describe all algebraic Laurent series solutions for Cayley configurations (in progress).
- How to prove the conjectures beyond dimension/codimension two? There exists a characterization of normal configurations A for which all solutions are algebraic ([Beukers ’10]), certainly for non integer parameter vectors β. New techniques are needed.
Summarizing

Our statement of bivariate hypergeometric series is the translation of the general combinatorial structure on the A-side (which also provides statements for the generalization to any number of variables).

The study of A-hypergeometric systems provides a general framework under which we can treat many systems that had been studied separately in the literature.

Questions

- Describe all algebraic Laurent series solutions for Cayley configurations (in progress).
- How to prove the conjectures beyond dimension/codimension two? There exists a characterization of normal configurations A for which all solutions are algebraic ([Beukers ’10]), certainly for non integer parameter vectors β. New techniques are needed.
The End

Thank you for your attention!