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Abstract.

Building on the work of P.N. Norton, we give com-
binatorial formulae for two maximal decompositions
of the identity into orthogonal idempotents in the
0-Hecke algebra of the symmetric group, CH0(SN).
This construction is compatible with the branching
from H0(SN−1) to H0(SN).

Goal
We identify a formula for two different maxi-
mal orthogonal decompositions of the identity
into idempotents for the 0-Hecke algebra of the
symmetric group. These decompositions obey a
branching rule from H0(SN−1) to H0(SN).

Definition (The 0-Hecke Monoid)

The 0-Hecke monoid H0(SN) is generated by the
collection πi for i in the set I = {1, . . . , N −1} with
relations:
• Idempotence: π2

i = πi,
•Commutation: πiπj = πjπi for |i− j| > 1,
•Braid Relation: πiπi+1πi = πi+1πiπi+1.
The 0-Hecke algebra CH0(SN) is the monoid al-
gebra of the 0-Hecke monoid. These relations are
encoded in the Dynkin diagram.
The 0-Hecke monoid of the symmetric group can be
considered as the monoid generated by the
anti-sorting operators on permutations of N . These
πi act on permutation σ = (σ1, σ2, . . . , σN) by
transposing σi and σi+1 if σi < σi+1, and doing
nothing otherwise.

Automorphisms

CH0(SN) is alternatively generated as an algebra by
elements π−i := (1 − πi), which satisfy the same re-
lations as the πi generators. There is a unique auto-
morphism Ψ of CH0(SN) defined by πi Ψ→ (1− πi).
For any longest element w+

J , the image Ψ(w+
J ) is a

longest element in the (1 − πi) generators; this ele-
ment is denoted w−J .

Ψ : πi −→ (1− πi)
Θ : πi −→ πN−i

κ : πi1πi2 · · · πik−1πik −→ πikπik−1 · · · πi2πi1

The idempotents constructed by the formula in this
poster are fixed as a set under the automorphisms
Ψ and Θ, but the automorphism κ can be used to
obtain a second set of orthogonal idempotents.

Representation Theory

To each subset J of I = {1, 2, . . . , N − 1} is as-
sociated a simple and an indecomposable projective
module. The simple modules are one dimensional,
and are given by the map λJ defined on the genera-
tors as follows:

λJ(πi) =



0 if i ∈ J,
1 if i 6∈ J.

The indecomposable (left) projective modules can be
realized combinatorially as the collection of elements
in the monoid whose right descent set is exactly J .
Let w+

J be the longest element in the generators in-
dexed by J , and w−

Ĵ
be Ψ(w+

I\J). Then, by a theorem
of P.N. Norton, the left projective module is:

H0(SN)w+
Jw
−
Ĵ .

Unfortunately, these elements w+
Jw
−
Ĵ

are neither or-
thogonal nor idempotent. The goal of this project
was to obtain an orthogonal decomposition of the
identity into idempotents.

Construction of Idempotents

•Choose a signed diagram D, by assigning a sign to
each node of the Dynkin diagram. The 2N−1

signed diagrams are in bĳection with the set of
simple modules. For D a signed diagram, let Di

be the signed sub-diagram consisting of the first i
entries of D.

•Construct the elements LD and RD, by taking the
product of the longest elements in parabolic
submonoids of adjacent matching signs, in the
generators π±i according to the sign in the
diagram.

•Set CD = LDRD. This is the diagram demipotent
associated to D. We call an element x demipotent
if there exists a finite positive integer m such that
xm = xm + 1. (Thus, xm is idempotent.)

•Finally, obtain the idempotent:
ID = CN−1

D = CD1CD2 · · ·CDN=D.
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Figure: Construction of an Idempotent for CH0(S8).

Branching of Diagram Demipotents

Let D+ and D− denote the signed diagrams equal
to D with an extra + or − adjoined.
The diagram demipotents obey the branching rule
from SN−1 to SN :

CD = CD+ + CD−.

Furthermore, ‘sibling’ diagram demipotents D+ and
D− commute and are orthogonal:

CD−CD+ = CD+CD− = 0.
We now state the main result.

Main Theorem

Each diagram demipotent CD for H0(SN) is
demipotent, and yields an idempotent ID =
CD1CD2 · · ·CD = CN

D . The collection of these
idempotents {ID} form an orthogonal set of prim-
itive idempotents that sum to 1.

Conjecture

Applying a ‘mask’ according to a signed Dynkin dia-
gram D to the word

uN = π1π2 · · · πN−1πNπN−1 · · · π2π1

seems to produce demipotent elements which yield
the same idempotents as the diagram demipotents
CD. This has been checked up to N = 9 using Sage-
Combinat.
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