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X = X(0) : X(1) : X(2) :

fX(t) = t3 + 5t2 + 6t + 1 fX
(1)

(t) = t3 + 12t2 + 18t + 6 fX
(2)

(t) = t3 + 36t2 + 72t + 36

qX0 (t) = 1 + 5t + 6t2 + t3 qX1 (t) = 1
6 + 2t + 3t2 + t3 qX2 (t) = 1

36 + t + 2t2 + t3 . . . −→ q2(t) = 1
2t + 3

2t
2 + t3

Setup

X: a d-dimensional simplicial complex

X(k): the k-fold barycentric subdivision of X

fXi : the number of i-faces of X

fX := (fX−1, f
X
0 , . . . , fXd ): the f -vector of X

fX(t) := fX−1t
d+1 + fX0 td + . . . + fXd−1t + fXd : the f -polynomial of X

qXn (t) := td+1

[(d+1)!]nf
X (n)

(t−1)

Main results
As n grows, the qXn (t) converge to a limit polynomial qd(t)
that does not depend onX but only on the dimension d. Its
roots are contained in [−1, 0] and are reflection-symmetric
about −1

2.

The roots of the f -polynomials converge to the reciprocals
of the roots of the qd(t).

Geometric intuition
As n grows, the contribution of the higher-dimensional
cells to the number of new cells of dimensions i dominates
the one of the lower-dimensional cells – for every i.

Motivation
Theorem 1 (Brenti and Welker, 2008 [1]). As n grows, the roots of
fX

(n)
(t) converge towards d negative real numbers which depend only

on d, not on X .

Proof: Analytical methods. �

Question: Why? What are these numbers?

Geometric explanation
Let σi be the standard i-simplex, and let f̊σ

(1)
i

j denote the number of open

j-cells in the interior of σ(1)
i . Then

fX
(n)

= fX
(n−1)

Fd = fX(Fd)
n

where Fd := [f̊
σ
(1)
i

j ]i,j=−1,...,d is lower triangular.

The matrix Fd has eigenvalues 0!, 1!, . . . , d!.

Let t := (td+1, . . . , t1, 1), t := (1, t, t2, . . . , td+1). Then

fX
(n)

(t) = fXPd diag(0!, 1!, . . . , (d + 1)!)nP−1
d t

and thus

qXn (t) = fXPd diag
([

0!

(d + 1)!

]n
,

[
1!

(d + 1)!

]n
, . . . ,

[
(d + 1)!

(d + 1)!

]n)
P−1
d t

→ fXPd diag(0, . . . , 0, 1)P−1
d t

Let then qd(t) := diag(0, . . . , 0, 1)P−1
d t

Notice: qd(t) clearly does not depend on X .

Since the qXn (t) are monic and of same degree as qd(t), the roots of the
qXn (t) converge to the roots of qd(t) (see for instance [3]).

Hence for growing n the roots of fX
(n)

(t) converge to the reciprocals of
the roots of qd(t), that do not depend on X!

Subdivisions via formal power series
Theorem 2 (D., Pixton, Sabalka 2009).

B(etx) =
1

1− (ex − 1)t

where B : Z[t][[x]]→ Z[t][[x]] is given on monomials by the operator

b : Z[t] → Z[t]

g(t) 7→
∑
k≥0

∆k{g(l)}l tk

In fact, b represents barycentric subdivision because, for all j,

b(qXj (t)) = d!qXj+1(t).

Corollary 3.
b(qd(t)) = d!qd(t)

and since the eigenvalues of Fd are distinct, qd(t) is determined by this
equation up to a sign.

Symmetry of the roots
Theorem 4 (D.,Pixton, Sabalka 2009).

bι = ιb

as operators on Z[t], where

ι : Z[t]→ Z[t]

g(t) 7→ g(−1− t)

Proof: The map ι is clearly an involution, and Bι(etx) = ιB(etx). �

With Corollary 3, it follows that

qd(t) = (−1)d qd(−1− t).

Hence, the roots of qd(t) are distinct, contained in the interval [−1, 0]
and symmetric under reflection about −1

2. In particular, −1
2 is a root if

and only if d is even.

Notice: Our method, via the operators b and ι, can be applied for more
general subdivision methods and yields a limit polynomial with “sym-
metric” limit roots for this more general case as well. See [2].

Further questions

• Compute the coefficients of qd(t) “explicitly” from geometric properties of Rd.
• Prove “combinatorially” that the roots of qd(t) are in [−1, 0].

•What is the significance of the roots of qd(t)? Do they have any topological or geometric meaning? In particular:

• Is the middle root −1
2 connected to the Euler Characteristic of the d-sphere?

• (asked by Lou Billera) Does the symmetry come from the Dehn-Sommerville equations?

Computations

Our methods yield explicit formulas for the coefficients of Pd, P
−1
d , and

hence for the coefficients of qd(t). We list them up to d = 9.

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

1 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0

1
2

3
2 1 0 0 0 0 0 0 0

2
11

13
11 2 1 0 0 0 0 0 0

1
19

25
38

40
19

5
2 1 0 0 0 0 0

132
10411

3004
10411

45
29

95
29 3 1 0 0 0 0

90
34399

3626
34399

61607
68798

245
82

385
82

7
2 1 0 0 0

15984
33846961

12351860
372316571

7924
18469

39221
18469

56
11

70
11 4 1 0 0

983304
12980789207

119432466
12980789207

2296176994
12980789207

536193
429266

919821
214633

567
71

588
71

9
2 1 0

1345248918720
123031432784730871

281136722386176
123031432784730871

4358731100
67808366729

42780833020
67808366729

1335075
448471

3478503
448471

1050
89

930
89 5 1

The corresponding roots can be approximated as follows:

−1 0
−1 −.5 0
−1 −.76112 −.23888 0
−1 −.88044 −.5 −.11956 0
−1 −.93787 −.68002 −.31998 −.06213 0
−1 −.9668 −.79492 −.5 −.20508 −.0332 0
−1 −.98189 −.86737 −.63852 −.36148 −.13263 −.01811 0
−1 −.98996 −.91332 −.73961 −.5 −.26039 −.08668 −.01004 0
−1 −.99437 −.94277 −.81205 −.61285 −.38715 −.18795 −.05723 −.00563 0
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