Barycentric subdivisions of simplicial complexes

Emanuele Delucchi (Binghamton), Lucas Sabalka (Binghamton), Aaron Pixton (Princeton)

Setup

X : a d-dimensional simplicial complex
$X^{(k)}$: the k-fold barycentric subdivision of X
f_{i}^{X} : the number of i-faces of X
$f^{X}:=\left(f_{-1}^{X}, f_{0}^{X}, \ldots, f_{d}^{X}\right):$ the f-vector of X
$f^{X}(t):=f_{-1}^{X} t^{d+1}+f_{0}^{X} t^{d}+\ldots+f_{d-1}^{X} t+f_{d}^{X}$: the f-polynomial of X
$q_{n}^{X}(t):=\frac{t^{d+1}}{[(d+1)!]^{n}} X^{X^{(n)}}\left(t^{-1}\right)$

$f^{X}(t)=t^{3}+5 t^{2}+6 t+1$
$q_{0}^{X}(t)=1+5 t+6 t^{2}+t^{3}$

$f^{X^{(1)}}(t)=t^{3}+12 t^{2}+18 t+6$
$q_{1}^{X}(t)=\frac{1}{6}+2 t+3 t^{2}+t^{3}$

$f^{X^{(2)}}(t)=t^{3}+36 t^{2}+72 t+36$
$q_{2}^{X}(t)=\frac{1}{36}+t+2 t^{2}+t^{3} \quad \ldots \longrightarrow q^{2}(t)=\frac{1}{2} t+\frac{3}{2} t^{2}+t^{3}$

Main results

As n grows, the $q_{n}^{X}(t)$ converge to a limit polynomial $q^{d}(t)$ hat does not depend on X but only on the dimension d. It oots are contained in $[-1,0]$ and are reflection-symmetric about $-\frac{1}{2}$.
The roots of the f-polynomials converge to the reciprocals
of the roots of the $q^{d}(t)$. of the roots of the $q^{d}(t)$.

Geometric intuition

As n grows, the contribution of the higher-dimensional cells to the number of new cells of dimensions i dominates the one of the lower-dimensional cells - for every i.

Motivation

Theorem 1 (Brenti and Welker, 2008 [1]). As n grows, the roots of $f^{X^{(n)}}(t)$ converge towards d negative real numbers which depend only on d, not on X.

Proof: Analytical methods.
Question: Why? What are these numbers?
Geometric explanation
Let σ_{i} be the standard i-simplex, and let $f_{j}^{\sigma_{i}^{(1)}}$ denote the number of open j-cells in the interior of $\sigma_{i}^{(1)}$. Then

$$
f^{X^{(n)}}=f^{X^{(n-1)}} F_{d}=f^{X}\left(F_{d}\right)^{n}
$$

where $F_{d}:=\left[f_{j}^{\sigma_{j}^{(1)}}\right]_{i, j=-1, \ldots, d}$ is lower triangular.
The matrix F_{d} has eigenvalues $0!, 1!, \ldots, d!$
Let $\underline{t}:=\left(t^{d+1}, \ldots, t^{1}, 1\right), \bar{t}:=\left(1, t, t^{2}, \ldots, t^{d+1}\right)$. Then

$$
f^{X^{(n)}}(t)=f^{X} P_{d} \operatorname{diag}(0!, 1!, \ldots,(d+1)!)^{n} P_{d}^{-1} \underline{t}
$$

and thus
$q_{n}^{X}(t)=f^{X} P_{d} \operatorname{diag}\left(\left[\frac{0!}{(d+1)!}\right]^{n},\left[\frac{1!}{(d+1)!}\right]^{n}, \ldots,\left[\frac{(d+1)!}{(d+1)!}\right]^{n}\right) P_{d}^{-1} \bar{t}$

$$
\rightarrow f^{X} P_{d} \operatorname{diag}(0, \ldots, 0,1) P_{d}^{-1} \bar{t}
$$

$$
\text { Let then } \quad q^{d}(t):=\operatorname{diag}(0, \ldots, 0,1) P_{d}^{-1} \bar{t}
$$

Notice: $q^{d}(t)$ clearly does not depend on X.
Since the $q_{n}^{X}(t)$ are monic and of same degree as $q^{d}(t)$, the roots of the $q_{n}^{X}(t)$ converge to the roots of $q^{d}(t)$ (see for instance [3]).
Hence for growing n the roots of $f^{X^{(n)}}(t)$ converge to the reciprocals of the roots of $q^{d}(t)$, that do not depend on X !

Subdivisions via formal power series

Theorem 2 (D., Pixton, Sabalka 2009).

$$
B\left(e^{t x}\right)=\frac{1}{1-\left(e^{x}-1\right) t}
$$

where $B: \mathbb{Z}[t][x x] \rightarrow \mathbb{Z}[t][x x]$ is given on monomials by the operator

$$
\begin{aligned}
b: \mathbb{Z}[t] & \rightarrow \mathbb{Z}[t] \\
g(t) & \mapsto \sum_{k \geq 0}^{k} \Delta^{k}\{g(l)\} t^{k}
\end{aligned}
$$

In fact, b represents barycentric subdivision because, for all j,

$$
b\left(q_{j}^{X}(t)\right)=d!q_{j+1}^{X}(t) .
$$

Corollary 3.

$$
b\left(q^{d}(t)\right)=d!q^{d}(t)
$$

and since the eigenvalues of F_{d} are distinct, $q^{d}(t)$ is determined by this equation up to a sign.

Further questions

- Compute the coefficients of $q^{d}(t)$ "explicitly" from geometric properties of \mathbb{R}^{d}.
- Prove "combinatorially" that the roots of $q^{d}(t)$ are in $[-1,0]$.

What is the significance of the roots of $q^{d}(t)$? Do they have any topological or geometric meaning? In particular:

- Is the middle root $-\frac{1}{2}$ connected to the Euler Characteristic of the d-sphere?
- (asked by Lou Billera) Does the symmetry come from the Dehn-Sommerville equations?

Symmetry of the roots
Theorem 4 (D.,Pixton, Sabalka 2009).
$b \iota=\iota b$
as operators on $\mathbb{Z}[t]$, where

$$
: \mathbb{Z}[t] \rightarrow \mathbb{Z}[t]
$$

$$
g(t) \mapsto g(-1-t)
$$

Proof: The map ι is clearly an involution, and $B \iota\left(e^{t x}\right)=\iota B\left(e^{t x}\right) . \quad \square$ With Corollary 3 , it follows that

$$
q^{d}(t)=(-1)^{d} q^{d}(-1-t) .
$$

Hence, the roots of $q^{d}(t)$ are distinct, contained in the interval $[-1,0]$ and symmetric under reflection about $-\frac{1}{2}$. In particular, $-\frac{1}{2}$ is a root if and only if d is even.
Notice: Our method, via the operators b and ι, can be applied for mor general subdivision methods and yields a limit polynomial with "sym metric" limit roots for this more general case as well. See [2]

Computations

Our methods yield explicit formulas for the coefficients of P_{d}, P_{d}^{-1}, and hence for the coefficients of $q^{d}(t)$. We list them up to $d=9$.

References

1]F. Brenti, V. Welker. f-vectors of barycentric subdivisions Math. Z. 259 n. 4 (2008), 849-865.
[2] E. Delucchi, A. Pixton, L. Sabalka. f-vectors of subdivided simplicial complexes. arXiv:1002.3201, 13 pp., 2009.
[3]E. E. Tyrtyshnikov. A brief introduction to numerical analysis. Birkhäuser, Boston 1997

