# Setup

X: a *d*-dimensional simplicial complex

 $X^{(k)}$ : the k-fold barycentric subdivision of X

 $f_i^X$ : the number of *i*-faces of X

$$\begin{split} f^{X} &:= (f_{-1}^{X}, f_{0}^{X}, \dots, f_{d}^{X}) \text{: the } f\text{-vector of } X \\ f^{X}(t) &:= f_{-1}^{X} t^{d+1} + f_{0}^{X} t^{d} + \dots + f_{d-1}^{X} t + f_{d}^{X} \text{: the } f\text{-polynomial of } X \\ q_{n}^{X}(t) &:= \frac{t^{d+1}}{[(d+1)!]^{n}} f^{X^{(n)}}(t^{-1}) \end{split}$$

## Motivation

Theorem 1 (Brenti and Welker, 2008 [1]). As n grows, the roots of  $f^{X^{(n)}}(t)$  converge towards d negative real numbers which depend only on d, not on X.

**Proof:** Analytical methods.

#### **Question:** Why? What are these numbers?

#### Geometric explanation

Let  $\sigma_i$  be the standard *i*-simplex, and let  $f_i^{\sigma_i^{(1)}}$  denote the number of open *j*-cells in the interior of  $\sigma_i^{(1)}$ . Then

$$f^{X^{(n)}} = f^{X^{(n-1)}} F_d = f^X (F_d)^n$$

where  $F_d := [\mathring{f}_j^{\sigma_i^{(1)}}]_{i,j=-1,...,d}$  is lower triangular. The matrix  $F_d$  has eigenvalues  $0!, 1!, \ldots, d!$ . Let  $\underline{t} := (t^{d+1}, \dots, t^1, 1), \overline{t} := (1, t, t^2, \dots, t^{d+1})$ . Then

$$f^{X^{(n)}}(t) = f^X P_d \operatorname{diag}(0!, 1!, \dots, (d+1)!)^n P_d^{-1} \underline{t}$$

and thus

$$\begin{split} q_n^X(t) &= f^X P_d \operatorname{diag} \left( \left[ \frac{0!}{(d+1)!} \right]^n, \left[ \frac{1!}{(d+1)!} \right]^n, \dots, \left[ \frac{(d+1)!}{(d+1)!} \right]^n \right) P_d^{-1} \overline{t} \\ & \to f^X P_d \operatorname{diag}(0, \dots, 0, 1) P_d^{-1} \overline{t} \\ \end{split}$$
Let then  $q^d(t) := \operatorname{diag}(0, \dots, 0, 1) P_d^{-1} \overline{t}$ 

Notice:  $q^d(t)$  clearly does not depend on X.

Since the  $q_n^X(t)$  are monic and of same degree as  $q^d(t)$ , the roots of the  $q_n^X(t)$  converge to the roots of  $q^d(t)$  (see for instance [3]).

Hence for growing n the roots of  $f^{X^{(n)}}(t)$  converge to the reciprocals of the roots of  $q^d(t)$ , that do not depend on X!

# Barycentric subdivisions of simplicial complexes

Emanuele Delucchi (Binghamton), Lucas Sabalka (Binghamton), Aaron Pixton (Princeton)



### Subdivisions via formal power series

**Theorem 2** (D., Pixton, Sabalka 2009).

$$B(e^{tx}) = \frac{1}{1 - (e^x - 1)t}$$

where  $B : \mathbb{Z}[t][[x]] \to \mathbb{Z}[t][[x]]$  is given on monomials by the operator

$$\begin{array}{rcl} & : \mathbb{Z}[t] & \to & \mathbb{Z}[t] \\ & g(t) & \mapsto & \displaystyle\sum_{k \ge 0} \Delta^k \{g(l)\}_l \, t^k \end{array}$$

In fact, b represents barycentric subdivision because, for all j,

$$b(q_j^X(t)) = d!q_{j+1}^X(t).$$

**Corollary 3.** 

$$b(q^d(t)) = d!q^d(t)$$

and since the eigenvalues of  $F_d$  are distinct,  $q^d(t)$  is determined by this equation up to a sign.

**Notice:** Our method, via the operators b and  $\iota$ , can be applied for more general subdivision methods and yields a limit polynomial with "symmetric" limit roots for this more general case as well. See [2].

### Further questions

• Compute the coefficients of  $q^d(t)$  "explicitly" from geometric properties of  $\mathbb{R}^d$ .

- Prove "combinatorially" that the roots of  $q^{d}(t)$  are in [-1, 0].
- What is the significance of the roots of  $q^d(t)$ ? Do they have any topological or geometric meaning? In particular:
- Is the middle root  $-\frac{1}{2}$  connected to the Euler Characteristic of the *d*-sphere?
- (asked by Lou Billera) Does the symmetry come from the Dehn-Sommerville equations?



### Symmetry of the roots

Theorem 4 (D., Pixton, Sabalka 2009).

$$b\iota = \iota b$$

as operators on  $\mathbb{Z}[t]$ , where

$$\begin{aligned} \iota : \mathbb{Z}[t] \to \mathbb{Z}[t] \\ g(t) \mapsto g(-1-t) \end{aligned}$$

**Proof:** The map  $\iota$  is clearly an involution, and  $B\iota(e^{tx}) = \iota B(e^{tx})$ .

With Corollary 3, it follows that

$$q^{d}(t) = (-1)^{d} q^{d} (-1 - t).$$

Hence, the roots of  $q^d(t)$  are distinct, contained in the interval [-1,0]and symmetric under reflection about  $-\frac{1}{2}$ . In particular,  $-\frac{1}{2}$  is a root if and only if d is even.

### Computations

| $t^1$                                      | $t^2$                                        | $t^3$                            | $t^4$                             | $t^5$                    | $t^6$                    | $t^7$             | $t^8$            | $t^9$ | $t^{10}$ |
|--------------------------------------------|----------------------------------------------|----------------------------------|-----------------------------------|--------------------------|--------------------------|-------------------|------------------|-------|----------|
|                                            |                                              |                                  |                                   |                          |                          |                   |                  |       |          |
| 1                                          | 0                                            | 0                                | 0                                 | 0                        | 0                        | 0                 | 0                | 0     | 0        |
| 1                                          | 1                                            | 0                                | 0                                 | 0                        | 0                        | 0                 | 0                | 0     | 0        |
| $\frac{1}{2}$                              | $\frac{3}{2}$                                | 1                                | 0                                 | 0                        | 0                        | 0                 | 0                | 0     | 0        |
| $\frac{2}{11}$                             | $\frac{13}{11}$                              | 2                                | 1                                 | 0                        | 0                        | 0                 | 0                | 0     | 0        |
| $\frac{1}{19}$                             | $\frac{25}{38}$                              | $\frac{40}{19}$                  | $\frac{5}{2}$                     | 1                        | 0                        | 0                 | 0                | 0     | 0        |
| $\frac{132}{10411}$                        | $\frac{3004}{10411}$                         | $\frac{45}{29}$                  | $\frac{95}{29}$                   | 3                        | 1                        | 0                 | 0                | 0     | 0        |
| $\frac{90}{34399}$                         | $\frac{3626}{34399}$                         | $\frac{61607}{68798}$            | $\frac{245}{82}$                  | $\frac{385}{82}$         | $\frac{7}{2}$            | 1                 | 0                | 0     | 0        |
| $\frac{15984}{33846961}$                   | $rac{12351860}{372316571}$                  | $\frac{7924}{18469}$             | $\frac{39221}{18469}$             | $\frac{56}{11}$          | $\frac{70}{11}$          | 4                 | 1                | 0     | 0        |
| $\frac{983304}{12980789207}$               | $\frac{119432466}{12980789207}$              | $\frac{2296176994}{12980789207}$ | $\frac{536193}{429266}$           | $\frac{919821}{214633}$  | $\frac{567}{71}$         | $\frac{588}{71}$  | $\frac{9}{2}$    | 1     | 0        |
| $\frac{1345248918720}{123031432784730871}$ | $\frac{281136722386176}{123031432784730871}$ | $\frac{4358731100}{67808366729}$ | $\frac{42780833020}{67808366729}$ | $\frac{1335075}{448471}$ | $\frac{3478503}{448471}$ | $\frac{1050}{89}$ | $\frac{930}{89}$ | 5     | 1        |

| -1 | 0     |       |       |       |       |       |       |         |
|----|-------|-------|-------|-------|-------|-------|-------|---------|
| -1 | 5     | 0     |       |       |       |       |       |         |
| -1 | 76112 | 23888 | 0     |       |       |       |       |         |
| -1 | 88044 | 5     | 11956 | 0     |       |       |       |         |
| -1 | 93787 | 68002 | 31998 | 06213 | 0     |       |       |         |
| -1 | 9668  | 79492 | 5     | 20508 | 0332  | 0     |       |         |
| -1 | 98189 | 86737 | 63852 | 36148 | 13263 | 01811 | 0     |         |
| -1 | 98996 | 91332 | 73961 | 5     | 26039 | 08668 | 01004 | 0       |
| -1 | 99437 | 94277 | 81205 | 61285 | 38715 | 18795 | 05723 | 00563 0 |
|    |       |       |       |       |       |       |       |         |

#### References

# Main results

As n grows, the  $q_n^X(t)$  converge to a limit polynomial  $q^d(t)$ that does not depend on X but only on the dimension d. Its roots are contained in [-1, 0] and are reflection-symmetric

The roots of the f-polynomials converge to the reciprocals of the roots of the  $q^d(t)$ .

#### Geometric intuition

As n grows, the contribution of the higher-dimensional cells to the number of new cells of dimensions *i* dominates the one of the lower-dimensional cells – for every i.

Our methods yield explicit formulas for the coefficients of  $P_d$ ,  $P_d^{-1}$ , and hence for the coefficients of  $q^d(t)$ . We list them up to d = 9.

The corresponding roots can be approximated as follows:

[1] F. Brenti, V. Welker. *f*-vectors of barycentric subdivisions *Math. Z.* **259** n. 4 (2008), 849–865.

[2] E. Delucchi, A. Pixton, L. Sabalka. *f*-vectors of subdivided simplicial complexes. arXiv:1002.3201, 13 pp., 2009.

[3] E. E. Tyrtyshnikov. A brief introduction to numerical analysis. Birkhäuser, Boston 1997.