

Motivation

Theorem. (Steingrímsson 2001) The chromatic polynomial $\chi_G(k+1)$ of a graph G is the Hilbert function of a relative Stanley-Reisner ideal.

Question Do other counting polynomials in graph theory have the same property?

Counting Polynomials as Hilbert Functions

Felix Breuer Freie Universität Berlin

Aaron Dall

Bounds on the Coefficients

Theorem. A polynomial $f(k) = \sum_{i=0}^{d} f_i {\binom{k-1}{i}}$ is the Hilbert function of some relative Stanley-Reisner ideal if and only if

 $f_i \in \mathbb{Z}_{\geq 0}$ for all $0 \leq i \leq d$.

Better Bounds on the Coefficients

...exploiting the geometry of inside-out polytopes. [See separate article arXiv:1004.3470.]

Theorem.

Let p denote the modular flow or tension polynomial of a graph. Let $d + 1 = \deg p$ and define the *h*-vector (h_0, \ldots, h_{d+1}) of the polynomial $(k+1)^{d+1} - p(k)$ by

 $1 + \sum_{k>1} \left((k+1)^{d+1} - p(k) \right) z^k = \frac{h_0 z^0 + \dots + h_{d+1} z^{d+1}}{(1-z)^{d+1}}.$

Then

1. $h_0 \le h_1 \le \ldots \le h_{\lfloor d/2 \rfloor}$, 2. $h_i \leq h_{d-i}$ for $i \leq d/2$, 3. $(h_0, h_1 - h_0, h_2 - h_1, \dots, h_{\lceil d/2 \rceil} - h_{\lceil d/2 \rceil - 1})$ is an *M*-vector.

