A unified bijective method for maps: application to two classes with boundaries

Olivier Bernardi* and Éric Fusy†

Basic definitions.
A planar map is a connected planar graph embedded in the plane. Our maps are simple: no loops nor multiple edges. A d-angulation is a map with faces of degree d. Triangulations and quadrangulations correspond to $d = 3$ and $d = 4$.

Goals.

Goal 1. Give a unified presentation of two existing bijections between maps and decorated plane trees ([6] for triangulations, and [10] for quadrangulations) by showing that both can be seen as a specialization of a "master bijection" Φ.

Goal 2. Use a similar systematic approach to deal with triangulations and quadrangulations with a boundary.

Master bijections Φ, Φ_\star.

Orientations. An orientation is minimal if there is no counterclockwise directed cycles. An orientation is accessible from a vertex v if there is a directed path from v to any vertex. We denote by O the set of minimal orientations which are accessible from the outer vertices and such that the outer-face is a simple directed cycle. We denote by O' the subset of these orientations such that every edge from an outer vertex to an inner vertex is directed toward the inner vertex.

Mobiles. A mobile is a bicolored plane tree with some buds (half-edges) attached to black vertices. Its excess is the number of edges minus the number of buds.

The master bijections Φ_\star, Φ. Let O be an orientation in O. The mobile $\Phi_\star(O)$ (resp. $\Phi(O)$) is defined by:

- black vertices ↔ inner faces of O.
- white vertices ↔ inner vertices of O.
- edges ↔ inner corners of O preceding an incoming (inner) edge.
- buds ↔ other inner corners of O.

Theorem. Φ_\star is a bijection between oriented maps in O and mobiles with positive excess. Φ is a bijection between oriented maps in O and mobiles with negative excess.

Triangulations/Quadrangulations without boundary.

Orientations. The Euler relation implies that a triangulation (resp. quadrangulation) with v inner vertices has $3v$ (resp. $2v$) inner edges. A k-orientation is an orientation such that every inner vertex has indegree k and every outer vertex has indegree 1.

Proposition. By [9], a triangulation admits a 3-orientation if and only if it is simple. By [7], a quadrangulation admits a 2-orientation if and only if it is simple.

In this case there is a unique k-orientation in O.

Theorem. The master bijection Φ induces a bijection between simple triangulations with v inner vertices and mobiles with v white vertices such that:

- black vertices have degree 3.
- white vertices have degree 3.

Theorem. The master bijection Φ_\star induces a bijection between simple quadrangulations with v inner vertices and mobiles with v white vertices such that:

- black vertices have degree 4.
- white vertices have degree 2.

Triangulations/Quadrangulations with boundary.

A p-annular triangulation is a map with one inner simple face of degree p and the other faces of degree 3.

Separation. A p-annular triangulation is separated if there is a cycle of length 3 separating the outer face and the p-gonal face. Any p-annular d-angulation A decomposes into a 3-annular triangulation (i.e., triangulation with a marked inner triangle) and a non-separated p-annular triangulation.

Orientation. Let $p > 3$. Any p-annular triangulation A admits a unique minimal orientation such that the p-gon is a directed cycle and any vertex not on the p-gon has indegree 1. This orientation is in O if and only if A is non-separated.

Theorem. The master bijection Φ_\star induces a bijection between simple non-separated p-annular triangulations and mobiles such that:

- black vertices have degree 3 except a special vertex of degree p with no buds.
- white vertices have degree 3 except neighbors of the special vertex having degrees summing to $2p - 3$.

Counting results (recovering Brown [4,5]). Let $t_{n,p}$ be the number of simple p-gonal triangulations with $n + p$ vertices rooted in the p-gonal face. The formal series $T_p(x) = \sum_{n \geq 0} t_{n,p} x^n$ satisfies $T_p(x) := \left(\frac{1}{x^p} - \frac{1}{x^{p-1}}\right) x^{2p-3}$, where $u = 1 + x u^t$. Consequently, the Lagrange inversion formula gives: $t_{n,p} = \frac{1}{p^n} \left(n + p - 1 \right)! \left(\frac{p}{p-1} \right)!$.

The same strategy applies to quadrangulations (and pentagulations, etc. [†]).

*O. Bernardi and E. Fusy. A bijection for triangulations, quadrangulations, pentagulations, etc. Submitted.