Weakly Directed Walks
A New Class of Self-Avoiding Walks

Axel Bacher (LaBRI), bacher@labri.fr Mireille Bousquet-Mélou (CNRS, LaBRI), bousquet@labri.fr — LaBRI, Université Bordeaux 1, 351 cours de la Libération, 33405 Talence, France

Introduction & Definitions

Self-avoiding walks (SAW)

Definition 1
A lattice walk is *self-avoiding* if it does not visit twice the same vertex.

Conjecture 2
The number c_n of SAW of length n and their average end-to-end distance D_n verify:

$$c_n \sim \alpha n^{11/32}\quad \text{and}\quad D_n \sim \kappa n^{1/4}$$

with $\mu \approx 2.64$.

Motivation: Find a subclass of SAW both large and conceptually pleasant. Previous record: prudent walks, with $\mu \approx 2.48$.

Weakly directed bridges

Notation: A NES-walk (for instance) is a walk that takes only N, E, and S steps.

Definition 3
A walk $v_0 \cdots v_n$ is a *bridge* if every vertex $v \neq v_0$ satisfies $h(v_0) \leq h(v) < h(v_n)$. A nonempty bridge is *irreducible* if it does not factor into two nonempty bridges.

A self-avoiding bridge is weakly directed if every irreducible bridge is either a NES-walk or a NWS-walk (Figure 1).

![Figure 1](image1.png)
Figure 1: A weakly directed bridge factored into five irreducible bridges.

Link with partially directed bridges

Notation: Let:

- $B(t)$ be the generating function of NES-bridges;
- $I(t)$ be the generating function of NES-irreducible bridges;
- $W(t)$ be the generating function of weakly directed bridges.

The decomposition into irreducible bridges yields:

$$B(t) = \frac{1}{1 - I(t)}$$

$$W(t) = \frac{1}{1 - (2I(t) - t)}.$$

Therefore:

$$W(t) = \frac{1}{1 - 2(t^{2} + (2t - 1)G_{k-2} - tG_{k-1})}$$

for $k \geq 2$.

Theorem 4
Let $k \geq 0$. The generating function of NES-bridges of height k is

$$B_k(t) = \frac{t^k}{G_k(t)},$$

where $G_k(t)$ is the sequence of polynomials defined by

- $G_0 = 1$;
- $G_k = (1 - t^2 + t^4)G_{k-1} - t^2G_{k-2}$

for $k \geq 2$.

Two different proofs of this result are outlined below (details on demand!).

![Figure 2](image2.png)
Figure 2: First proof of Theorem 4. Let $T_k(t, u)$ be the generating function of walks in a strip of height $k - 1$, with u accounting for the final height. The value of T_k is derived using the kernel method, and B_k follows. [1]

Enumeration

Enumeration of partially directed bridges

![Figure 3](image3.png)
Figure 3: Second proof of Theorem 4. A NES-bridge of height k is seen as an arbitrary sequence of *generalized steps*, and thus as a walk on a graph with vertices $\{0, \ldots, k - 1\}$. Such walks are enumerated using *heaps of cycles* techniques. [3]

Asymptotics & Random Sampling

Nature of the series & asymptotics

Proposition 5
The generating functions $B(t)$ and $W(t)$ both have a complex singularity structure and are not D-finite.

The number w_n of weakly directed bridges and their average end-to-end distance E_n are asymptotically:

$$w_n \sim \alpha n^\mu\quad \text{and}\quad E_n \sim \kappa n,$$

with $\mu \approx 2.5447$.

The growth constant is larger than for prudent walks, but the average end-to-end distance is still linear.

Random sampling

Proposition 6
It is possible to sample a weakly directed walk with approximate length n in time $O(n)$, using a Boltzmann sampler. [2]

References

