Introduction & Definitions

Self-avoiding walks (SAW)

Definition 1

A lattice walk is *self-avoiding* if it does not visit twice the same vertex. Conjecture 2

The number c_n of SAW of length n and their average end-to-end distance D_n verify

 $c_n \sim \alpha \mu^n n^{11/32}$ and $D_n \sim \kappa n^{3/4}$ with $\mu \approx 2.64$.

Motivation: Find a subclass of SAW both large and conceptually pleasant. Previous record: prudent walks, with $\mu \approx 2.48$.

Weakly directed bridges

Notation: A NES-walk (for instance) is a walk that takes only N, E, and S steps.

Definition 3

A walk $v_0 \cdots v_n$ is a *bridge* if every vertex $v \neq v_n$ satisfies $h(v_0) \le h(v) < h(v_n)$. A nonempty bridge is *irreducible* if it does not factor into two nonempty bridges.

A self-avoiding bridge is *weakly directed* if every irreducible bridge is either a **NES**-walk or a **NWS**-walk (Figure 1).

Figure 1: A weakly directed bridge factored into five irreducible bridges.

Weakly Directed Walks A New Class of Self-Avoiding Walks

Axel Bacher (LaBRI), bacher@labri.fr Mireille Bousquet-Mélou (CNRS, LaBRI), bousquet@labri.fr — LaBRI, Université Bordeaux 1, 351 cours de la Libération, 33405 Talence, France

Enumeration

Link with partially directed bridges Notation: Let:

- B(t) be the generating function of NES-bridges;
- I(t) be the generating function of NES-irreducible bridges;
- W(t) be the generating function of weakly directed bridges.

The decomposition into irreducible bridges yields:

$$B(t) = \frac{1}{1 - I(t)}; \qquad \qquad W(t) = \frac{1}{1 - (2I(t) - t)}.$$

Therefore:

Enumeration of partially directed bridges

Theorem 4
Let
$$k \ge 0$$
. The generating function of NES
 $B_k(t) = \frac{t^k}{G_k(t)},$

where $G_k(t)$ is the sequence of polynomials defined by

$$G_0 = 1;$$

 $G_k = (1 - t + t^2 + t^3)G_{k-1} - t^2G_{k-2}$

Two different proofs of this result are outlined below (details on demand!).

Figure 2: First proof of Theorem 4. Let $T_k(t, u)$ be the generating function of walks in a strip of height k-1, with u accounting for the final height. The value of T_k is derived using the *kernel method*, and B_k follows. [1]

Figure 3: Second proof of Theorem 4. A NES-bridge of height k is seen as an arbitrary sequence of *generalized steps*, and thus as a walk on a graph with vertices $\{0, \ldots, k-1\}$. Such walks are enumerated using heaps of *cycles* techniques. [3]

FPSAC 2010 - 22nd international Conference on Formal Power Series & Algebraic Combinatorics - August 2-6, 2010 - San Francisco - United States

 $W(t) = \frac{1}{1 - \frac{2B(t)}{1 - \frac{2B(t)}{1 + B(t)} + t}}.$

b-bridges of height k is

 $G_1 = 1 - t;$ for $k \geq 2$.

Asymptotics & Random Sampling

Nature of the series & asymptotics

Proposition 5

The generating functions B(t) and W(t) both have a complex singularity structure and are not D-finite. The number w_n of weakly directed bridges and their average end-to-end distance E_n are asymptotically

but the average end-to-end distance is still linear.

Random sampling

Proposition 6

It is possible to sample a weakly directed walk with approximate length n in time O(n), using a Boltzmann sampler. [2]

Figure 4: A random weakly directed bridge of length 1001, turned by 90°.

References

- Probab. Comput., 13(4-5):577-625, 2004.
- Berlin/Heidelberg, 1986.

 $w_n \sim \alpha \mu^n$ and $E_n \sim \kappa n$, with $\mu \approx 2.5447$.

The growth constant is larger than for prudent walks,

[1] M. Bousquet-Mélou and Y. Ponty. Culminating paths. *Discrete Math.* Theoret. Comput. Sci., 10(2), 2008. arXiv:0706.0694.

[2] Ph. Duchon, Ph. Flajolet, G. Louchard and G. Schaeffer. Boltzmann samplers for the enumeration of combinatorial structures. Combin.

[3] X. G. Viennot. Heaps of pieces, I: Basic definitions and combinatorial lemmas, volume 1234/1986, pages 321–350. Springer