Introduction

- Recently Ayyer and Mallick studied an asymmetric annihilation process.
- They determined transfer matrices and the partition function.
- They conjectured the spectrum of this process (including multiplicities).

Figure 1: Right shift and annihilation in the bulk with rate 1

Figure 2: Right shift and annihilation on left boundary with rate α

Figure 3: Annihilation on right boundary with rate β

- We prove the conjecture by generalizing the original.
- We outline a derivation of the partition function in the generalized model, which also reduces to the one obtained by Ayyer and Mallick in the original model.

Theorem and Conjecture (Ayyer and Mallick)

- Theorem: The partition function of the system of size L is given by

$$
z_{L}=2^{\binom{L-1}{2}}(1+2 \alpha)^{L-1}(1+\beta)^{L-1}(2 \alpha+\beta) .
$$

- Conjecture:

$$
\begin{aligned}
& \operatorname{det} M_{L}-\lambda 1_{L}=A_{L}(\lambda) A_{L}(\lambda+2 \alpha+\beta) B_{L}(\lambda+\beta) B_{L}(\lambda+2 \alpha), \\
& A_{L}(\lambda)=\prod_{k=0}^{\lceil L / 2\rceil}(\lambda+2 k)^{\left(\begin{array}{c}
(2-1
\end{array}\right)}, B_{L}(\lambda)=\prod_{k=0}^{\lfloor L / 2\rfloor}(\lambda+2 k+1)^{\left(\begin{array}{l}
(2 k+1
\end{array}\right) .}
\end{aligned}
$$

(see reference below)

Main Theorems

- Spectrum:

$$
\operatorname{det} \mathcal{M}_{L}(\alpha, \beta)=\operatorname{det}\left[\mathcal{A}_{L}(\alpha)-\mathcal{B}_{L}(\beta)\right]=\prod_{b \in \mathbb{B}^{L}}\left(\lambda_{b^{\Delta}}-\beta^{\text {rev }} \cdot \boldsymbol{b}\right)
$$

where $\lambda_{b}=\sum_{c \in \mathbb{B}^{L}}(-1)^{b \cdot c} \alpha_{c}$.

- This implies the original conjecture.
- Partition function:

$$
Z(\alpha, \beta)=\prod_{0 \neq \boldsymbol{b} \in \mathbb{B}^{L}}\left(\lambda_{b^{\Delta}}^{*}+\beta^{\mathrm{rev}} \cdot \boldsymbol{b}\right)
$$

where $\lambda_{b}^{*}=2 \sum_{c: b \cdot c=1} \alpha_{c}$

Partition Function for a Model with Inhomogeneities

- The transitions in Flg. 1 at bond \boldsymbol{j} occur with rate $\boldsymbol{\beta}_{j}$
- The transitions in Flg. 2 occur with rate α
- The transition in Flg. 3 occurs with rate β_{L}
- In this case the partition function is

$$
Z_{L}(\alpha, \vec{\beta})=\prod_{1 \leq j \leq L}\left(2 \alpha+\beta_{j}\right) \cdot \prod_{1 \leq i<j \leq L}\left(\beta_{i}+\beta_{j}\right)
$$

Examples of Transition Matrices

$M_{1}=\left[\begin{array}{cc}-\alpha & \alpha+\beta \\ \alpha & -\alpha-\beta\end{array}\right], M_{2}=\left[\begin{array}{cccc}\star & \beta & \alpha & 1 \\ 0 & \star & 1 & \alpha \\ \alpha & 0 & \star & \beta \\ 0 & \alpha & 0 & \star\end{array}\right], M_{3}=\left[\begin{array}{ccccccc}\star & \beta & 0 & 1 & \alpha & 0 & 1\end{array}\right]$
Diagonal elements \star have to be set such that the column sums vanish.

Inductive Structure of the Transition Matrices

$\sigma=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$, and 1_{L} is the identity matrix of size 2^{L}. Then

$$
M_{L}=\left[\begin{array}{cc}
M_{L-1}-\alpha\left(\sigma \otimes 1_{L-2}\right) & \alpha 1_{L-1}+\left(\sigma \otimes 1_{L-2}\right) \\
\alpha 1_{L-1} & M_{L-1}-1_{L-1}-\alpha\left(\sigma \otimes 1_{L-2}\right)
\end{array}\right],
$$

where M_{L} is a $\mathbf{2 \times 2}$ block matrix made up of matrices of size 2^{L-1}.

$$
\text { Definitions for Bitvectors } b=\left(b_{1}, \ldots, b_{L}\right) \in \mathbb{B}^{L}
$$

$$
\begin{gathered}
\sigma^{b}=\sigma^{b_{1} b_{2} \ldots b_{L}}=\sigma^{b_{1}} \otimes \sigma^{b_{2}} \otimes \cdots \otimes \sigma^{b_{L}} \\
\mathcal{A}_{L}(\alpha)=\sum_{b \in \mathbb{B}^{L}} \alpha_{b} \sigma^{b} \\
\phi_{j}: b_{1} \ldots b_{j} \ldots b_{L} \mapsto b_{1} \ldots \bar{b}_{j} \ldots b_{L} \\
\psi_{j}: b \mapsto \phi_{j} \phi_{j+1} b \\
\mathcal{P}_{L, j}=\sum_{b \in \mathbb{B}^{L}}|b\rangle\langle b|-\left|\psi_{j}^{b_{j}}(b)\right\rangle\langle b| \\
\mathcal{B}_{L}(\beta)=\sum_{1 \leq j \leq L} \beta_{j} \mathcal{P}_{L, j} \\
\mathcal{M}_{L}(\alpha, \beta)=\mathcal{A}_{L}(\alpha)-\mathcal{B}_{L}(\beta) \\
\Delta: b \mapsto b^{\Delta}=\left[\sum_{1 \leq i \leq L-j+1} b_{i}\right]_{1 \leq i \leq L}
\end{gathered}
$$

Idea of Proof

- H_{L} : Hadamard-transform of order $L: H_{L}=2^{-L / 2}\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]^{\otimes L}$
- \mathcal{A}_{L} diagonalizes under H_{L}
- \mathcal{B}_{L} becomes lower triangular under a suitable reordering of \boldsymbol{H}_{L}

$$
\tilde{H}_{L} \cdot B_{L}(\beta) \cdot \tilde{H}_{L}=B_{L}^{\mathrm{t}}\left(\beta^{\mathrm{rev}}\right)
$$

- $\widetilde{\boldsymbol{H}}_{L}$ is \boldsymbol{H}_{L} in the basis $\left\{\boldsymbol{b}^{\Delta} ; \boldsymbol{b} \in \mathbb{B}^{L}\right\}$

Illustration of the Theorem for $L=3, \beta=(\beta, \gamma, \delta)$

$$
\begin{array}{cl}
b & b^{\Delta} \\
000 & \lambda_{b^{\Delta}} \\
000[++++++++] \cdot \alpha & (\delta, \gamma, \beta) \cdot b \\
001100[++++----] \cdot \alpha & \beta \\
010110[++---++] \cdot \alpha & \gamma \\
011010[++--++-] \cdot \alpha & \beta+\gamma \\
100111[+-+-++-] \cdot \alpha & \delta \\
101011[+--++--+] \cdot \alpha & \beta+\delta \\
110001[+-+-+-+-] \cdot \alpha & \gamma+\delta \\
111101[+-+--+-+] \cdot \alpha & \beta+\gamma+\delta
\end{array}
$$

E.g., $\boldsymbol{b}=101$ contributes the factor
$\alpha_{000}-\alpha_{001}-\alpha_{010}-\alpha_{011}+\alpha_{100}-\alpha_{101}-\alpha_{110}-\alpha_{111}-\beta-\delta$

Reference

Arvind Ayyer, Kirone Mallick
Exact results for an asymmetric annihilation process with open boundaries
J. Phys. A: Math. Gen. 343045033 2010, 22pp.

