Compositions with Constrained Multiplicities

Margaret Archibald, Arnold Knopfmacher and Toufik Mansour

University of Cape Town, South Africa; University of the Witwatersrand, South Africa and University of Haifa, Israel
margaret.archibald@uct.ac.za, arnold.knopfmacher@wits.ac.za and toufik@math.haifa.ac.il

1. Introduction

We find the probability that a random composition (ordered partition) of the positive integer \(n \) has no parts occurring exactly \(j \) times, where \(j \) belongs to a specified finite forbidden set \(A \) of multiplicities. This probability is also studied in the related case of samples \(\Gamma = \{T_1, T_2, \ldots, T_n\} \) of independent, identically distributed random variables with a geometric distribution.

We derive generating functions for random compositions of a positive integer \(n \) in which no parts occur exactly \(j \) times, where \(j \) belongs to a specified finite forbidden set \(A \) of multiplicities. We refer to such compositions as being \(\Lambda \)-avoiding.

We find the probabilities that compositions and samples of geometric random variables are \(\Lambda \)-avoiding.

2. Examples

As a simple example of a forbidden set, we consider a sample where none of the \(n \) elements occur exactly \(a \) times. i.e., \(A = \{a\} \),

Another example is when a letter can occur only \(a \) times or more (or not at all). In this case \(A = \{1, 2, \ldots, a - 1\} \), for \(a \geq 2 \).

3. Notes

Note that we do not allow \(0 \) in the forbidden set.

We can generalise this by allocating each value a different forbidden set. For example, if the value 2 is not allowed to occur once, and the number of times that 5 can occur is anything except 2, 3 or 6 times, then we have \(A_2 = \{1\} \) and \(A_5 = \{1, 3, 5\} \). (We denote the forbidden set for the value \(i \) by \(A_i \)).

4. Compositions

Let \(C_{A_1}(z;m) \) be the generating function for the number of \(A_1 \)-avoiding compositions of \(n \) with exactly \(m \) parts from the set \(\{1, 2, \ldots, d\} \). We have

\[
C_{A_1}(z;m) = \sum_{k=1}^{\infty} \frac{z^k C_{A_1}(z;m-k)}{|m-k|!}.
\]

Solving this recurrence gives

Proposition 1 The generating function \(C_{A_1}(z) = \sum_{n=0}^{\infty} C_{A_1}(z)n^n \) is given by

\[
C_{A_1}(z) = \frac{1 - e^{-z}}{1 - e^{-z} \sum_{f \in A_1} \frac{e^{zf}}{z^n} f^n}.
\]

where \(C_{A_1}(z;m) \) is the generating function for the number of \(A_1 \)-avoiding compositions of \(n \) with exactly \(m \) parts in \(A_1 \).

Let \(C_{A_1}(n,m) \) be the number of \(A_1 \)-avoiding compositions of \(n \) with \(m \) parts and \(C_{A_1}(n) = \sum_{m=1}^{\infty} C_{A_1}(n,m) \) be the number of \(A_1 \)-avoiding compositions of \(n \).

Corollary 1 The generating function \(C_{A_1}(z) = \sum_{n=0}^{\infty} C_{A_1}(z)n^n \) is given by

\[
C_{A_1}(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!} \sum_{i=1}^{n} \left(\frac{e^{zi}}{i} \right)^{-A_1} \delta_{n,j}.
\]

Theorem 2 Let \(A \) be any finite set of positive integers. The probability \(p_A(n) \), that a geometric sample of length \(n \) has no letter appearing with multiplicity \(j \), for any \(j \in A \) is (asymptotically as \(n \to \infty \))

\[
p_A(n) = 1 - \frac{\Gamma(n+1)}{\Gamma(n+1) + \Gamma(n+1 - j)}.
\]

Even in this simple case of \(A = \{a\} \) it does not seem easy to find asymptotic estimates for the coefficients from the generating functions appearing above. Instead we use the probabilistic argument as given in [1, 2] to explain the relationship between compositions of \(n \) and the special case for geometric random variables when \(p = 1/2 \).

Asymptotic estimates are consequently derived for compositions by equipping the set of all compositions of \(n \) with the uniform probability measure and considering the probability that a randomly chosen composition of \(n \) is \(\Lambda \)-avoiding.

5. Geometric random variables

Let \(\Gamma = \{T_1, T_2, \ldots, T_n\} \) be a sample of independent identically distributed (i.i.d.) geometric random variables with parameter \(p \), that is, \(P(T_i = k) = p^k \cdot q \), with \(p + q = 1 \), where \(k = 1, 2, \ldots, n \).

The method used in [3] can be applied to the problem described above. We use a recursion on the probabilities and then use Poissonisation to enable us to use Mellin transforms and then de-Poissonisation to obtain our asymptotic estimates.

Theorem 2 Let \(A \) be any finite set of positive integers. The probability \(p_A(n) \), that a geometric sample of length \(n \) has no letter appearing with multiplicity \(j \), for any \(j \in A \) is (asymptotically as \(n \to \infty \))

\[
p_A(n) = 1 - \frac{\Gamma(n+1)}{\Gamma(n+1) + \Gamma(n+1 - j)}.
\]

Even in this simple case of \(A = \{a\} \) it does not seem easy to find asymptotic estimates for the coefficients from the generating functions appearing above. Instead we use the probabilistic argument as given in [1, 2] to explain the relationship between compositions of \(n \) and the special case for geometric random variables when \(p = 1/2 \).

Asymptotic estimates are consequently derived for compositions by equipping the set of all compositions of \(n \) with the uniform probability measure and considering the probability that a randomly chosen composition of \(n \) is \(\Lambda \)-avoiding.

Corollary 2 Let \(A \) be any finite set of positive integers. The probability \(p_A(n) \), that a composition of \(n \) has no part appearing with multiplicity \(j \), for any \(j \in A \) is (asymptotically as \(n \to \infty \))

\[
p_A(n) = 1 - \frac{\Gamma(n+1)}{\Gamma(n+1) + \Gamma(n+1 - j)}.
\]

with

\[
p_A(n) = \frac{1}{\Gamma(n+1)} \sum_{m=0}^{n} \frac{\Gamma(m+1)}{\Gamma(m+1 - j)} (\frac{1}{n} + \frac{1}{j} + \cdots + \frac{1}{j^{m-1}}) \delta_{m,j}.
\]

where \(\delta_{m,j} \) is a periodic function of \(z \) with period 1, mean 0 and small amplitude, with \(\delta_{m,j} = \frac{\delta_{m,j}}{\Gamma(n+1)} \) and

\[
\Gamma(n+1) = \frac{1}{\Gamma(n+1)} \sum_{m=0}^{n} \frac{\Gamma(m+1)}{\Gamma(m+1 - j)} (\frac{1}{n} + \frac{1}{j} + \cdots + \frac{1}{j^{m-1}}) \delta_{m,j}.
\]

for \(k \in Z(0) \), for \(x_k \neq \frac{\delta_{m,j}}{\Gamma(n+1)} \).

For example if we want the probability that no element occurs exactly once, we have a main term of

\[
1 - p \frac{\delta_{m,j}}{\Gamma(n+1)} \delta_{m,j}.
\]

The main term is plotted as a function of \(p \) below, for this and another case.

\[\text{No element occurs exactly once}\]

\[\text{No element occurs exactly twice}\]

In spite of what the graphs tend to suggest for \(p \) near 1, the main term here is strictly greater than zero for every \(0 < p < 1 \) as

\[
\Gamma(n+1) = \frac{1}{\Gamma(n+1)} \sum_{m=0}^{n} \frac{\Gamma(m+1)}{\Gamma(m+1 - j)} (\frac{1}{n} + \frac{1}{j} + \cdots + \frac{1}{j^{m-1}}) \delta_{m,j}.
\]

References

