Hypergeometric series with algebro-geometric dressing

Alicia Dickenstein
Universidad de Buenos Aires

FPSAC 2010, 08/05/10

Based on joint work:

The structure of bivariate rational hypergeometric functions (with Eduardo Cattani and Fernando Rodríguez Villegas) arXiv:0907.0790, to appear: IMRN.

Advances in Math., 2005.

Compositio Math., 2001

Math. J., 2010.

Based on joint work:

The structure of bivariate rational hypergeometric functions (with Eduardo Cattani and Fernando Rodríguez Villegas) arXiv:0907.0790, to appear: IMRN.

Bivariate hypergeometric D-modules (with Laura Matusevich and Timur Sadykov) Advances in Math., 2005.

Compositio Math., 2001.

Math. J., 2010.

Based on joint work:

The structure of bivariate rational hypergeometric functions (with Eduardo Cattani and Fernando Rodríguez Villegas) arXiv:0907.0790, to appear: IMRN.

Bivariate hypergeometric D-modules (with Laura Matusevich and Timur Sadykov) Advances in Math., 2005.

Rational Hypergeometric functions (with Eduardo Cattani and Bernd Sturmfels) Compositio Math., 2001.

Binomial D-modules (with Laura Matusevich and Ezra Miller) Duke Math. J., 2010.

Based on joint work:

The structure of bivariate rational hypergeometric functions (with Eduardo Cattani and Fernando Rodríguez Villegas) arXiv:0907.0790, to appear: IMRN.

Bivariate hypergeometric D-modules (with Laura Matusevich and Timur Sadykov) Advances in Math., 2005.

Rational Hypergeometric functions (with Eduardo Cattani and Bernd Sturmfels) Compositio Math., 2001.

Binomial D-modules (with Laura Matusevich and Ezra Miller) Duke Math. J., 2010.

Outline

Aim and plan of the talk

- Aim: Show two sample results on bivariate hypergeometric series/recurrences with inspiration/proof driven by algebraic geometry.

1. First problem: Solutions to hypergeometric recurrences in \mathbb{Z}^{2}.
2. Second problem: Characterize hypergeometric rational series in 2 variables.
3. Definitions/properties concerning A-hypergeometric systems and toric residues.

Outline

Aim and plan of the talk

- Aim: Show two sample results on bivariate hypergeometric series/recurrences with inspiration/proof driven by algebraic geometry.

1. First problem: Solutions to hypergeometric recurrences in \mathbb{Z}^{2}.
2. Second problem: Characterize hypergeometric rational series in 2 variables.
3. Definitions/properties concerning A-hypergeometric systems and toric residues.

Outline

Aim and plan of the talk

- Aim: Show two sample results on bivariate hypergeometric series/recurrences with inspiration/proof driven by algebraic geometry.

1. First problem: Solutions to hypergeometric recurrences in \mathbb{Z}^{2}.
2. Second problem: Characterize hypergeometric rational series in 2 variables.
3. Definitions/properties concerning A-hypergeometric systems and toric residues.

Outline

Aim and plan of the talk

- Aim: Show two sample results on bivariate hypergeometric series/recurrences with inspiration/proof driven by algebraic geometry.

1. First problem: Solutions to hypergeometric recurrences in \mathbb{Z}^{2}.
2. Second problem: Characterize hypergeometric rational series in 2 variables.
3. Definitions/properties concerning A-hypergeometric systems and toric residues.

Outline

Aim and plan of the talk

- Aim: Show two sample results on bivariate hypergeometric series/recurrences with inspiration/proof driven by algebraic geometry.

1. First problem: Solutions to hypergeometric recurrences in \mathbb{Z}^{2}.
2. Second problem: Characterize hypergeometric rational series in 2 variables.
3. Definitions/properties concerning A-hypergeometric systems and toric residues.

Solutions to hypergeometric recurrences

$$
\begin{gathered}
\mathbf{A}_{n}:=\frac{(\alpha)_{n}(\beta)_{n}}{(\gamma)_{n} n!}, \quad F(\alpha, \beta, \gamma ; x)=\sum_{n \geq 0} \mathbf{A}_{\mathbf{n}} x^{n} . \\
(c)_{n}=c(c+1) \ldots(c+n-1),(1)_{n}=n!, \text { Pochammer symbol }
\end{gathered}
$$

Solutions to hypergeometric recurrences

$$
\begin{gathered}
\mathbf{A}_{n}:=\frac{(\alpha)_{n}(\beta)_{n}}{(\gamma)_{n} n!}, \quad F(\alpha, \beta, \gamma ; x)=\sum_{n \geq 0} \mathbf{A}_{\mathbf{n}} x^{n} . \\
(c)_{n}=c(c+1) \ldots(c+n-1),(1)_{n}=n!, \text { Pochammer symbol }
\end{gathered}
$$

Key equivalence

The coefficients A_{n} satisfy the following recurrence:

$$
\begin{equation*}
(1+n)(\gamma+n) A_{n+1}-(\alpha+n)(\beta+n) A_{n}=0 \tag{1}
\end{equation*}
$$

(1) is equivalent to the fact that $F(\alpha, \beta, \gamma ; x)$ satisfies Gauss differential equation (Kummer, Riemann):

Solutions to hypergeometric recurrences

$$
\begin{gathered}
\mathbf{A}_{n}:=\frac{(\alpha)_{n}(\beta)_{n}}{(\gamma)_{n} n!}, \quad F(\alpha, \beta, \gamma ; x)=\sum_{n \geq 0} \mathbf{A}_{\mathbf{n}} x^{n} . \\
(c)_{n}=c(c+1) \ldots(c+n-1),(1)_{n}=n!, \text { Pochammer symbol }
\end{gathered}
$$

Key equivalence

The coefficients A_{n} satisfy the following recurrence:

$$
\begin{equation*}
(1+n)(\gamma+n) A_{n+1}-(\alpha+n)(\beta+n) A_{n}=0 \tag{1}
\end{equation*}
$$

So: A_{n+1} / A_{n} is the rational function of $n:(\alpha+n)(\beta+n) /(1+n)(\gamma+n)$.

1) is equivalent to the fact that $F(\alpha, \beta, \gamma ; x)$ satisfies Gauss differential equation (Kummer, Riemann):

Solutions to hypergeometric recurrences

$$
\begin{gathered}
\mathbf{A}_{n}:=\frac{(\alpha)_{n}(\beta)_{n}}{(\gamma)_{n} n!}, \quad F(\alpha, \beta, \gamma ; x)=\sum_{n \geq 0} \mathbf{A}_{\mathbf{n}} x^{n} . \\
(c)_{n}=c(c+1) \ldots(c+n-1),(1)_{n}=n!, \text { Pochammer symbol }
\end{gathered}
$$

Key equivalence

The coefficients A_{n} satisfy the following recurrence:

$$
\begin{equation*}
(1+n)(\gamma+n) A_{n+1}-(\alpha+n)(\beta+n) A_{n}=0 \tag{1}
\end{equation*}
$$

(1) is equivalent to the fact that $F(\alpha, \beta, \gamma ; x)$ satisfies Gauss differential equation (Kummer, Riemann):

$$
[\Theta(\Theta+\gamma-1)-x(\Theta+\alpha)(\Theta+\beta)](F)=0, \quad \Theta=x \frac{d}{d x}
$$

Solutions to hypergeometric recurrences

$$
\mathbf{A}_{n}:=\frac{(\alpha)_{n}(\beta)_{n}}{(\gamma)_{n} n!}, \quad \gamma \notin \mathbb{Z}_{<0}, \quad F(\alpha, \beta, \gamma ; x)=\sum_{n \geq 0} \mathbf{A}_{n} x^{n}
$$

Solutions to hypergeometric recurrences

$$
\mathbf{A}_{n}:=\frac{(\alpha)_{n}(\beta)_{n}}{(\gamma)_{n} n!}, \quad \gamma \notin \mathbb{Z}_{<0}, \quad F(\alpha, \beta, \gamma ; x)=\sum_{n \geq 0} \mathbf{A}_{n} x^{n}
$$

Key equivalence

If we define $A_{n}=0$ for all $n \in \mathbb{Z}_{<0}$, the coefficients A_{n} satisfy the recurrence:

$$
\begin{equation*}
(1+n)(\gamma+n) A_{n+1}-(\alpha+n)(\beta+n) A_{n}=0, \quad \text { for all } n \in \mathbb{Z} \tag{2}
\end{equation*}
$$

(2) is equivalent to the fact that $F(\alpha, \beta, \gamma ; x)$ satisfies Gauss differential equation:

Solutions to hypergeometric recurrences

$$
\mathbf{A}_{n}:=\frac{(\alpha)_{n}(\beta)_{n}}{(\gamma)_{n} n!}, \quad \gamma \notin \mathbb{Z}_{<0}, \quad F(\alpha, \beta, \gamma ; x)=\sum_{n \geq 0} \mathbf{A}_{n} x^{n}
$$

Key equivalence

If we define $A_{n}=0$ for all $n \in \mathbb{Z}_{<0}$, the coefficients A_{n} satisfy the recurrence:

$$
\begin{equation*}
(1+n)(\gamma+n) A_{n+1}-(\alpha+n)(\beta+n) A_{n}=0, \quad \text { for all } n \in \mathbb{Z} \tag{2}
\end{equation*}
$$

(2) is equivalent to the fact that $F(\alpha, \beta, \gamma ; x)$ satisfies Gauss differential equation:

Solutions to hypergeometric recurrences

$$
\mathbf{A}_{n}:=\frac{(\alpha)_{n}(\beta)_{n}}{(\gamma)_{n} n!}, \quad \gamma \notin \mathbb{Z}_{<0}, \quad F(\alpha, \beta, \gamma ; x)=\sum_{n \geq 0} \mathbf{A}_{n} x^{n}
$$

Key equivalence

If we define $A_{n}=0$ for all $n \in \mathbb{Z}_{<0}$, the coefficients A_{n} satisfy the recurrence:

$$
\begin{equation*}
(1+n)(\gamma+n) A_{n+1}-(\alpha+n)(\beta+n) A_{n}=0, \quad \text { for all } n \in \mathbb{Z} \tag{2}
\end{equation*}
$$

(2) is equivalent to the fact that $F(\alpha, \beta, \gamma ; x)$ satisfies Gauss differential equation:

$$
[\Theta(\Theta+\gamma-1)-x(\Theta+\alpha)(\Theta+\beta)](F)=0, \quad \Theta=x \frac{d}{d x}
$$

Solutions to hypergeometric recurrences

$$
\mathbf{B}_{n}:=\frac{(\alpha)_{n}(\beta)_{n}}{(\gamma)_{n}(\delta)_{n}}, \quad \gamma, \delta \notin \mathbb{Z}_{<0}, \quad G(\alpha, \beta, \gamma, \delta ; x)=\sum_{n \geq 0} \mathbf{B}_{n} x^{n}
$$

Caveat

$$
\begin{equation*}
(\delta+n)(\gamma+n) B_{n+1}-(\alpha+n)(\beta+n) B_{n}=0, \quad \text { for all } n \in \mathbb{N} . \tag{3}
\end{equation*}
$$

but $G(\alpha, \beta, \gamma ; x)$ does not satisfy the differential equation:

$$
[(\Theta+\delta-1)(\Theta+\gamma-1)-x(\Theta+\alpha)(\Theta+\beta)](G)=0
$$

Solutions to hypergeometric recurrences

$$
\mathbf{B}_{n}:=\frac{(\alpha)_{n}(\beta)_{n}}{(\gamma)_{n}(\delta)_{n}}, \quad \gamma, \delta \notin \mathbb{Z}_{<0}, \quad G(\alpha, \beta, \gamma, \delta ; x)=\sum_{n \geq 0} \mathbf{B}_{n} x^{n}
$$

Caveat

$$
\begin{equation*}
(\delta+n)(\gamma+n) B_{n+1}-(\alpha+n)(\beta+n) B_{n}=0, \quad \text { for all } n \in \mathbb{N} . \tag{3}
\end{equation*}
$$

but $G(\alpha, \beta, \gamma ; x)$ does not satisfy the differential equation:

$$
[(\Theta+\delta-1)(\Theta+\gamma-1)-x(\Theta+\alpha)(\Theta+\beta)](G)=0
$$

Solutions to hypergeometric recurrences

$$
\mathbf{B}_{n}:=\frac{(\alpha)_{n}(\beta)_{n}}{(\gamma)_{n}(\delta)_{n}}, \quad \gamma, \delta \notin \mathbb{Z}_{<0}, \quad G(\alpha, \beta, \gamma, \delta ; x)=\sum_{n \geq 0} \mathbf{B}_{n} x^{n}
$$

Caveat

$$
\begin{equation*}
(\delta+n)(\gamma+n) B_{n+1}-(\alpha+n)(\beta+n) B_{n}=0, \quad \text { for all } n \in \mathbb{N} . \tag{3}
\end{equation*}
$$

but $G(\alpha, \beta, \gamma ; x)$ does not satisfy the differential equation:

$$
[(\Theta+\delta-1)(\Theta+\gamma-1)-x(\Theta+\alpha)(\Theta+\beta)](G)=0
$$

Solutions to hypergeometric recurrences

$$
\mathbf{B}_{n}:=\frac{(\alpha)_{n}(\beta)_{n}}{(\gamma)_{n}(\delta)_{n}}, \quad \gamma, \delta \notin \mathbb{Z}_{<0}, \quad G(\alpha, \beta, \gamma, \delta ; x)=\sum_{n \geq 0} \mathbf{B}_{n} x^{n}
$$

The normalization hides the initial condition
If we define $B_{n}=0$ for all $n \in \mathbb{Z}_{<0}$, then
$(\mathrm{n}+1)(\delta+n)(\gamma+n) B_{n+1}-(\mathrm{n}+1)(\alpha+n)(\beta+n) B_{n}=0, \quad$ for all $n \in \mathbb{Z}$.
$G(\alpha, \beta, \gamma ; x)$ does satisfy the differential equation:

Solutions to hypergeometric recurrences

$$
\mathbf{B}_{n}:=\frac{(\alpha)_{n}(\beta)_{n}}{(\gamma)_{n}(\delta)_{n}}, \quad \gamma, \delta \notin \mathbb{Z}_{<0}, \quad G(\alpha, \beta, \gamma, \delta ; x)=\sum_{n \geq 0} \mathbf{B}_{n} x^{n}
$$

The normalization hides the initial condition
If we define $B_{n}=0$ for all $n \in \mathbb{Z}_{<0}$, then
$(\mathrm{n}+1)(\delta+n)(\gamma+n) B_{n+1}-(\mathrm{n}+1)(\alpha+n)(\beta+n) B_{n}=0, \quad$ for all $n \in \mathbb{Z}$.
$G(\alpha, \beta, \gamma ; x)$ does satisfy the differential equation:

Solutions to hypergeometric recurrences

$$
\mathbf{B}_{n}:=\frac{(\alpha)_{n}(\beta)_{n}}{(\gamma)_{n}(\delta)_{n}}, \quad \gamma, \delta \notin \mathbb{Z}_{<0}, \quad G(\alpha, \beta, \gamma, \delta ; x)=\sum_{n \geq 0} \mathbf{B}_{n} x^{n}
$$

The normalization hides the initial condition
If we define $B_{n}=0$ for all $n \in \mathbb{Z}_{<0}$, then

$$
\begin{equation*}
(\mathrm{n}+1)(\delta+n)(\gamma+n) B_{n+1}-(\mathrm{n}+1)(\alpha+n)(\beta+n) B_{n}=0, \quad \text { for all } n \in \mathbb{Z} \tag{4}
\end{equation*}
$$

$G(\alpha, \beta, \gamma ; x)$ does satisfy the differential equation:

$$
[\Theta(\Theta+\delta-1)(\Theta+\gamma-1)-x(\Theta+1)(\Theta+\alpha)(\Theta+\beta)](G)=0
$$

Hypergeometric recurrences in two variables

Naive generalization

Let $a_{m n}, m, n \in \mathbb{N}$ such that there exist two rational functions $R_{1}(m, n)$, $R_{2}(m, n)$ expressible as products of (affine) linear functions in (m, n), such that

$$
\begin{equation*}
\frac{a_{m+1, n}}{a_{m n}}=R_{1}(m, n), \quad \frac{a_{m, n+1}}{a_{m n}}=R_{2}(m, n) \tag{5}
\end{equation*}
$$

(with obvious compatibility conditions).

Hypergeometric recurrences in two variables

Naive generalization

Let $a_{m n}, m, n \in \mathbb{N}$ such that there exist two rational functions $R_{1}(m, n)$, $R_{2}(m, n)$ expressible as products of (affine) linear functions in (m, n), such that

$$
\begin{equation*}
\frac{a_{m+1, n}}{a_{m n}}=R_{1}(m, n), \quad \frac{a_{m, n+1}}{a_{m n}}=R_{2}(m, n) \tag{5}
\end{equation*}
$$

(with obvious compatibility conditions).

Hypergeometric recurrences in two variables

Naive generalization

Let $a_{m n}, m, n \in \mathbb{N}$ such that there exist two rational functions $R_{1}(m, n)$, $R_{2}(m, n)$ expressible as products of (affine) linear functions in (m, n), such that

$$
\begin{equation*}
\frac{a_{m+1, n}}{a_{m n}}=R_{1}(m, n), \quad \frac{a_{m, n+1}}{a_{m n}}=R_{2}(m, n) \tag{5}
\end{equation*}
$$

(with obvious compatibility conditions).
Write

$$
\mathbf{R}_{\mathbf{1}}(\mathbf{m}, \mathbf{n})=\frac{\mathbf{P}_{\mathbf{1}}(\mathbf{m}, \mathbf{n})}{\mathbf{Q}_{\mathbf{1}}(\mathbf{m}+\mathbf{1}, \mathbf{n})}, \quad \mathbf{R}_{\mathbf{2}}(\mathbf{m}, \mathbf{n})=\frac{\mathbf{P}_{\mathbf{2}}(\mathbf{m}, \mathbf{n})}{\mathbf{Q}_{\mathbf{2}}(\mathbf{m}, \mathbf{n}+\mathbf{1})}
$$

Hypergeometric recurrences in two variables

Naive generalization, suite
Consider the generating function $F\left(x_{1}, x_{2}\right)=\sum_{m, n \in \mathbb{N}} a_{m n} x_{1}^{m} x_{2}^{n}$ and the differential operators ($\theta_{i}=x_{i} \frac{\partial}{\partial x_{i}}$):

$$
\Delta_{1}=Q_{1}\left(\theta_{1}, \theta_{2}\right)-x_{1} P_{1}\left(\theta_{1}, \theta_{2}\right) \quad \Delta_{2}=Q_{2}\left(\theta_{1}, \theta_{2}\right)-x_{2} P_{2}\left(\theta_{1}, \theta_{2}\right)
$$

Then, the recurrences (5) in the coefficients $a_{m n}$ are equivalent to $\Delta_{1}(F)=\Delta_{2}(F)=0$ if $Q_{1}(0, n)=Q_{2}(m, 0)=0$ and in this case, if we extend the definition of $a_{m n}$ by 0 , the recurrences

Hypergeometric recurrences in two variables

Naive generalization, suite
Consider the generating function $F\left(x_{1}, x_{2}\right)=\sum_{m, n \in \mathbb{N}} a_{m n} x_{1}^{m} x_{2}^{n}$ and the differential operators ($\theta_{i}=x_{i} \frac{\partial}{\partial x_{i}}$):

$$
\Delta_{1}=Q_{1}\left(\theta_{1}, \theta_{2}\right)-x_{1} P_{1}\left(\theta_{1}, \theta_{2}\right) \quad \Delta_{2}=Q_{2}\left(\theta_{1}, \theta_{2}\right)-x_{2} P_{2}\left(\theta_{1}, \theta_{2}\right)
$$

Then, the recurrences (5) in the coefficients $a_{m n}$ are equivalent to $\Delta_{1}(F)=\Delta_{2}(F)=0$ if $Q_{1}(0, n)=Q_{2}(m, 0)=0$ and in this case, if we extend the definition of $a_{m n}$ by 0 , the recurrences

Hypergeometric recurrences in two variables

Naive generalization, suite
Consider the generating function $F\left(x_{1}, x_{2}\right)=\sum_{m, n \in \mathbb{N}} a_{m n} x_{1}^{m} x_{2}^{n}$ and the differential operators ($\theta_{i}=x_{i} \frac{\partial}{\partial x_{i}}$):

$$
\Delta_{1}=Q_{1}\left(\theta_{1}, \theta_{2}\right)-x_{1} P_{1}\left(\theta_{1}, \theta_{2}\right) \quad \Delta_{2}=Q_{2}\left(\theta_{1}, \theta_{2}\right)-x_{2} P_{2}\left(\theta_{1}, \theta_{2}\right)
$$

Then, the recurrences (5) in the coefficients $a_{m n}$ are equivalent to

$$
\Delta_{1}(F)=\Delta_{2}(F)=0
$$

) and in this case, if we

Hypergeometric recurrences in two variables

Naive generalization, suite
Consider the generating function $F\left(x_{1}, x_{2}\right)=\sum_{m, n \in \mathbb{N}} a_{m n} x_{1}^{m} x_{2}^{n}$ and the differential operators ($\theta_{i}=x_{i} \frac{\partial}{\partial x_{i}}$):

$$
\Delta_{1}=Q_{1}\left(\theta_{1}, \theta_{2}\right)-x_{1} P_{1}\left(\theta_{1}, \theta_{2}\right) \quad \Delta_{2}=Q_{2}\left(\theta_{1}, \theta_{2}\right)-x_{2} P_{2}\left(\theta_{1}, \theta_{2}\right)
$$

Then, the recurrences (5) in the coefficients $a_{m n}$ are equivalent to $\Delta_{1}(F)=\Delta_{2}(F)=0$ if $Q_{1}(0, n)=Q_{2}(m, 0)=0$ and in this case, if we extend the definition of $a_{m n}$ by 0 , the recurrences

Hypergeometric recurrences in two variables

Naive generalization, suite

Consider the generating function $F\left(x_{1}, x_{2}\right)=\sum_{m, n \in \mathbb{N}} a_{m n} x_{1}^{m} x_{2}^{n}$ and the differential operators ($\theta_{i}=x_{i} \frac{\partial}{\partial x_{i}}$):

$$
\Delta_{1}=Q_{1}\left(\theta_{1}, \theta_{2}\right)-x_{1} P_{1}\left(\theta_{1}, \theta_{2}\right) \quad \Delta_{2}=Q_{2}\left(\theta_{1}, \theta_{2}\right)-x_{2} P_{2}\left(\theta_{1}, \theta_{2}\right)
$$

Then, the recurrences (5) in the coefficients $a_{m n}$ are equivalent to $\Delta_{1}(F)=\Delta_{2}(F)=0$ if $Q_{1}(0, n)=Q_{2}(m, 0)=0$ and in this case, if we extend the definition of $a_{m n}$ by 0 , the recurrences

$$
Q_{1}(m+1, n) a_{m+1, n}-P_{1}(m, n)=Q_{2}(m, n+1) a_{m, n+1}-P_{2}(m, n)=0
$$

hold for all $(m, n) \in \mathbb{Z}^{2}$.

Two examples from combinatorics

Dissections

A subdivision of a regular n-gon into $(m+1)$ cells by means of nonintersecting diagonals is called a dissection.

How many dissections are there?

So, the generating function is naturally defined for (m, n) belonging to the lattice points in the rational cone $\{(a, b) / 0 \leq a \leq b-3\}$ (and 0 outside).

Two examples from combinatorics

Dissections

A subdivision of a regular n-gon into $(m+1)$ cells by means of nonintersecting diagonals is called a dissection.

How many dissections are there?

So, the generating function is naturally defined for (m, n) belonging to the lattice points in the rational cone $\{(a, b) / 0 \leq a \leq b-3\}$ (and 0 outside).

Two examples from combinatorics

Dissections

A subdivision of a regular n-gon into $(m+1)$ cells by means of nonintersecting diagonals is called a dissection.

How many dissections are there?

So, the generating function is naturally defined for (m, n) belonging to the lattice points in the rational cone $\{(a, b) / 0 \leq a \leq b-3\}$ (and 0 outside).

Two examples from combinatorics

Dissections

A subdivision of a regular n-gon into $(m+1)$ cells by means of nonintersecting diagonals is called a dissection.

How many dissections are there?

$$
d_{m, n}=\frac{1}{m+1}\binom{n-3}{m}\binom{m+n-1}{m} ; \quad 0 \leq m \leq n-3 .
$$

So, the generating function is naturally defined for (m, n) belonging to the lattice points in the rational cone $\{(a, b) / 0 \leq a \leq b-3\}$ (and 0 outside).

Two examples from combinatorics

[Example 9.2, Gessell and Xin, The generating function of ternary trees and continued fractions, EJC '06]

$$
G X(x, y)=\frac{1-x y}{1-x y^{2}-3 x y-x^{2} y}=\sum_{m, n \geq 0}\binom{m+n}{2 m-n} x^{m} y^{n}
$$

where $\binom{a}{b}$ is defined as 0 if $b<0$ or $a-b<0$.
So we are summing over the lattice points in the convex rational cone terms are defined over \mathbb{Z}^{2} extending by 0 outside the cone.

Two examples from combinatorics

[Example 9.2, Gessell and Xin, The generating function of ternary trees and continued fractions, EJC '06]

$$
G X(x, y)=\frac{1-x y}{1-x y^{2}-3 x y-x^{2} y}=\sum_{m, n \geq 0}\binom{m+n}{2 m-n} x^{m} y^{n}
$$

where $\binom{a}{b}$ is defined as 0 if $b<0$ or $a-b<0$.
So we are summing over the lattice points in the convex rational cone terms are defined over \mathbb{Z}^{2} extending by 0 outside the cone.

Two examples from combinatorics

[Example 9.2, Gessell and Xin, The generating function of ternary trees and continued fractions, EJC '06]

$$
G X(x, y)=\frac{1-x y}{1-x y^{2}-3 x y-x^{2} y}=\sum_{m, n \geq 0}\binom{m+n}{2 m-n} x^{m} y^{n},
$$

where $\binom{a}{b}$ is defined as 0 if $b<0$ or $a-b<0$. So we are summing over the lattice points in the convex rational cone $\left\{(a, b) \in \mathbb{R}^{2}: 2 a-b \geq 0,2 b-a \geq 0\right\}=\mathbb{R}_{\geq 0}(1,2)+\mathbb{R}_{\geq 0}(2,1)$. Or: the terms are defined over \mathbb{Z}^{2} extending by 0 outside the cone.

Our results through an example

Data

Consider the hypergeometric terms $a_{m, n}=(-1)^{n} \frac{(2 m-n+2)!}{n!m!(m-2 n)!}$ for (m, n) integers with $m-2 n \geq 0, n \geq 0$, which satisfy the recurrences:

$$
\frac{a_{m+1, n}}{a_{m, n}}=\frac{(2 m-n+4)(2 m-n+3)}{(m+1)(m+1-2 n)}=\frac{\mathbf{P}_{\mathbf{1}}(\mathbf{m}, \mathbf{n})}{\mathbf{Q}_{1}(\mathbf{m}+\mathbf{1}, \mathbf{n})}
$$

Our results through an example

Data

Consider the hypergeometric terms $a_{m, n}=(-1)^{n} \frac{(2 m-n+2)!}{n!m!(m-2 n)!}$ for (m, n) integers with $m-2 n \geq 0, n \geq 0$, which satisfy the recurrences:

$$
\frac{a_{m+1, n}}{a_{m, n}}=\frac{(2 m-n+4)(2 m-n+3)}{(m+1)(m+1-2 n)}=\frac{\mathbf{P}_{\mathbf{1}}(\mathbf{m}, \mathbf{n})}{\mathbf{Q}_{1}(\mathbf{m}+\mathbf{1}, \mathbf{n})}
$$

Our results through an example

Data

Consider the hypergeometric terms $a_{m, n}=(-1)^{n} \frac{(2 m-n+2)!}{n!m!(m-2 n)!}$ for (m, n) integers with $m-2 n \geq 0, n \geq 0$, which satisfy the recurrences:

$$
\begin{gathered}
\frac{a_{m+1, n}}{a_{m, n}}=\frac{(2 m-n+4)(2 m-n+3)}{(m+1)(m+1-2 n)}=\frac{\mathbf{P}_{\mathbf{1}}(\mathbf{m}, \mathbf{n})}{\mathbf{Q}_{\mathbf{1}}(\mathbf{m}+\mathbf{1}, \mathbf{n})} \\
P_{1}(m, n)=(2 m-n+4)(2 m-n+3), \quad Q_{1}(m, n)=m(m-2 n)
\end{gathered}
$$

Our results through an example

Data

Consider the hypergeometric terms $a_{m, n}=(-1)^{n} \frac{(2 m-n+2)!}{n!m!(m-2 n)!}$ for (m, n) integers with $m-2 n \geq 0, n \geq 0$, which satisfy the recurrences:

$$
\begin{gathered}
\frac{a_{m+1, n}}{a_{m, n}}=\frac{(2 m-n+4)(2 m-n+3)}{(m+1)(m+1-2 n)}=\frac{\mathbf{P}_{\mathbf{1}}(\mathbf{m}, \mathbf{n})}{\mathbf{Q}_{\mathbf{1}}(\mathbf{m}+\mathbf{1}, \mathbf{n})} \\
P_{1}(m, n)=(2 m-n+4)(2 m-n+3), \quad Q_{1}(m, n)=m(m-2 n) \\
\frac{a_{m, n+1}}{a_{m, n}}=-\frac{(m-2 n)(m-2 n-1)}{(2 m-n+2)(n+1)}=\frac{\mathbf{P}_{2}(\mathbf{m}, \mathbf{n})}{\mathbf{Q}_{2}(\mathbf{m}, \mathbf{n}+\mathbf{1})}
\end{gathered}
$$

Our results through an example

Data

Consider the hypergeometric terms $a_{m, n}=(-1)^{n} \frac{(2 m-n+2)!}{n!m!(m-2 n)!}$ for (m, n) integers with $m-2 n \geq 0, n \geq 0$, which satisfy the recurrences:

$$
\begin{gathered}
\frac{a_{m+1, n}}{a_{m, n}}=\frac{(2 m-n+4)(2 m-n+3)}{(m+1)(m+1-2 n)}=\frac{\mathbf{P}_{\mathbf{1}}(\mathbf{m}, \mathbf{n})}{\mathbf{Q}_{\mathbf{1}}(\mathbf{m}+\mathbf{1}, \mathbf{n})} \\
P_{1}(m, n)=(2 m-n+4)(2 m-n+3), \quad Q_{1}(m, n)=m(m-2 n) \\
\frac{a_{m, n+1}}{a_{m, n}}=-\frac{(m-2 n)(m-2 n-1)}{(2 m-n+2)(n+1)}=\frac{\mathbf{P}_{\mathbf{2}}(\mathbf{m}, \mathbf{n})}{\mathbf{Q}_{\mathbf{2}}(\mathbf{m}, \mathbf{n}+\mathbf{1})} \\
P_{2}(m, n)=-(m-2 n)(m-2 n-1), \quad Q_{2}(m, n)=(2 m-n+3) n
\end{gathered}
$$

Our results through an example

We have that the terms $t_{m, n}=a_{m n}$ for $m-2 n \geq 0, n \geq 0$ and $t_{(m, n)}=0$ for any other $(m, n) \in \mathbb{Z}^{2}$, satisfy the recurrences:

$$
\begin{equation*}
Q_{1}(m+1, n) t_{m+1, n}-P_{1}(m, n) t_{m, n}=Q_{2}(m, n+1) t_{(m, n+1)}-P_{2}(m, n) t_{m, n}=0 . \tag{6}
\end{equation*}
$$

Our results through an example

We have that the terms $t_{m, n}=a_{m n}$ for $m-2 n \geq 0, n \geq 0$ and $t_{(m, n)}=0$ for any other $(m, n) \in \mathbb{Z}^{2}$, satisfy the recurrences:
$Q_{1}(m+1, n) t_{m+1, n}-P_{1}(m, n) t_{m, n}=Q_{2}(m, n+1) t_{(m, n+1)}-P_{2}(m, n) t_{m, n}=0$.

Question

Which other terms $t_{m, n},(m, n) \in \mathbb{Z}^{2}$ satisfy (6)?
Remark
When the linear forms in the polynomials P_{i}, Q_{i} defining the recurrences have generic constant terms, the solution is given by the

Our results through an example

We have that the terms $t_{m, n}=a_{m n}$ for $m-2 n \geq 0, n \geq 0$ and $t_{(m, n)}=0$ for any other $(m, n) \in \mathbb{Z}^{2}$, satisfy the recurrences:
$Q_{1}(m+1, n) t_{m+1, n}-P_{1}(m, n) t_{m, n}=Q_{2}(m, n+1) t_{(m, n+1)}-P_{2}(m, n) t_{m, n}=0$.

Question

Which other terms $t_{m, n},(m, n) \in \mathbb{Z}^{2}$ satisfy (6)?

Remark

When the linear forms in the polynomials P_{i}, Q_{i} defining the recurrences have generic constant terms, the solution is given by the Ore-Sato coefficients.

Our results through an example

Question

Which other terms $t_{m, n},(m, n) \in \mathbb{Z}^{2}$ satisfy (6)?

Answer
 There are three other solutions $b_{m n}, c_{m n}, d_{m n}$ (up to linear combinations)

Our results through an example

Question

Which other terms $t_{m, n},(m, n) \in \mathbb{Z}^{2}$ satisfy (6)?

Answer

There are three other solutions $b_{m n}, c_{m n}, d_{m n}$ (up to linear combinations)

Our results through an example

Answer

There are four solutions $a_{m n}, b_{m n}, c_{m n}, d_{m n}$ (up to linear combinations), with generating series F_{1}, \ldots, F_{4} :

$$
\begin{aligned}
& a_{m, n}=(-1)^{n} \frac{(2 m-n+2)!}{n!m!(m-2 n)!}, \quad F_{1}=\sum_{\substack{m-2 n \geq 0 \\
n \geq 0}} a_{m, n} x_{1}^{m} x_{2}^{n}, \\
& b_{m, n}=(-1)^{m} \frac{(2 m-n-1)!}{n!m!(-2 m+n+3)!}, \quad F_{2}=\sum_{\substack{-2 m+n \geq 3 \\
m \geq 0}} b_{m, n} x_{1}^{m} x_{2}^{n} \\
& c_{m, n}=(-1)^{m+n} \frac{(-m-1)!(-n-1)!}{(m-2 n)!(-2 m+n-3)!}, \quad F_{3}=\sum_{\substack{m-2 n \geq 0 \\
-2 m+n \geq 3}} \quad c_{m, n} x_{1}^{m} x_{2}^{n} \\
& d_{-2,-1}=1, \quad F_{4}=x_{1}^{-2} x_{2}^{-1} .
\end{aligned}
$$

In all cases, $t_{m n}=0$ outside the support of the series.

Pictorially

Explanations

- The generating functions F_{i} satisfy the differential equations:

$$
\begin{aligned}
& {\left[\Theta_{1}\left(\Theta_{1}-2 \Theta_{2}\right)-x_{1}\left(2 \Theta_{1}-\Theta_{2}+4\right)\left(2 \Theta_{1}-\Theta_{2}+3\right)\right](F)=0,} \\
& {\left[\Theta_{2}\left(-2 \Theta_{1}+\Theta_{2}-3\right)-x_{2}\left(2 \Theta_{2}-\Theta_{1}\right)\left(2 \Theta_{2}-\Theta_{1}+1\right)\right](F)=0 .}
\end{aligned}
$$

- Consider the system of binomial equations:
in the commutative polynomial ring $\mathbb{C}\left[\partial_{1}, \ldots, \partial_{4}\right]$
- The zero set $q_{1}=q_{2}=0$ has two irreducible components, one of degree 3 and mutiplicity 1 , which intersects $\left(\mathbb{C}^{*}\right)^{4}$ (it is the twisted cubic),

Explanations

- The generating functions F_{i} satisfy the differential equations:
$\left[\Theta_{1}\left(\Theta_{1}-2 \Theta_{2}\right)-x_{1}\left(2 \Theta_{1}-\Theta_{2}+4\right)\left(2 \Theta_{1}-\Theta_{2}+3\right)\right](F)=0$, $\left[\Theta_{2}\left(-2 \Theta_{1}+\Theta_{2}-3\right)-x_{2}\left(2 \Theta_{2}-\Theta_{1}\right)\left(2 \Theta_{2}-\Theta_{1}+1\right)\right](F)=0$.
- Consider the system of binomial equations:

$$
q_{1}=\partial_{1}{ }^{1} \partial_{3}{ }^{1}-\partial_{2}{ }^{2}, q_{2}=\partial_{2}{ }^{1} \partial_{4}{ }^{1}-\partial_{3}{ }^{2}
$$

in the commutative polynomial ring $\mathbb{C}\left[\partial_{1}, \ldots, \partial_{4}\right]$. degree 3 and mutiplicity 1
which intersects cubic),

Explanations

- The generating functions F_{i} satisfy the differential equations:
$\left[\Theta_{1}\left(\Theta_{1}-2 \Theta_{2}\right)-x_{1}\left(2 \Theta_{1}-\Theta_{2}+4\right)\left(2 \Theta_{1}-\Theta_{2}+3\right)\right](F)=0$, $\left[\Theta_{2}\left(-2 \Theta_{1}+\Theta_{2}-3\right)-x_{2}\left(2 \Theta_{2}-\Theta_{1}\right)\left(2 \Theta_{2}-\Theta_{1}+1\right)\right](F)=0$.
- Consider the system of binomial equations:

$$
q_{1}=\partial_{1}{ }^{1} \partial_{3}{ }^{1}-\partial_{2}{ }^{2}, q_{2}=\partial_{2}{ }^{1} \partial_{4}{ }^{1}-\partial_{3}{ }^{2}
$$

in the commutative polynomial ring $\mathbb{C}\left[\partial_{1}, \ldots, \partial_{4}\right]$.

- The zero set $q_{1}=q_{2}=0$ has two irreducible components, one of degree 3 and mutiplicity 1 , which intersects $\left(\mathbb{C}^{*}\right)^{4}$ (it is the twisted cubic),

Explanations

- The generating functions F_{i} satisfy the differential equations:
$\left[\Theta_{1}\left(\Theta_{1}-2 \Theta_{2}\right)-x_{1}\left(2 \Theta_{1}-\Theta_{2}+4\right)\left(2 \Theta_{1}-\Theta_{2}+3\right)\right](F)=0$, $\left[\Theta_{2}\left(-2 \Theta_{1}+\Theta_{2}-3\right)-x_{2}\left(2 \Theta_{2}-\Theta_{1}\right)\left(2 \Theta_{2}-\Theta_{1}+1\right)\right](F)=0$.
- Consider the system of binomial equations:

$$
q_{1}=\partial_{1}{ }^{1} \partial_{3}{ }^{1}-\partial_{2}{ }^{2}, q_{2}=\partial_{2}{ }^{1} \partial_{4}{ }^{1}-\partial_{3}{ }^{2}
$$

in the commutative polynomial ring $\mathbb{C}\left[\partial_{1}, \ldots, \partial_{4}\right]$.

- The zero set $q_{1}=q_{2}=0$ has two irreducible components, one of degree 3 and mutiplicity 1 , which intersects $\left(\mathbb{C}^{*}\right)^{4}$ (it is the twisted cubic),

Explanations

- The generating functions F_{i} satisfy the differential equations:
$\left[\Theta_{1}\left(\Theta_{1}-2 \Theta_{2}\right)-x_{1}\left(2 \Theta_{1}-\Theta_{2}+4\right)\left(2 \Theta_{1}-\Theta_{2}+3\right)\right](F)=0$, $\left[\Theta_{2}\left(-2 \Theta_{1}+\Theta_{2}-3\right)-x_{2}\left(2 \Theta_{2}-\Theta_{1}\right)\left(2 \Theta_{2}-\Theta_{1}+1\right)\right](F)=0$.
- Consider the system of binomial equations:

$$
q_{1}=\partial_{1}{ }^{1} \partial_{3}{ }^{1}-\partial_{2}{ }^{2}, q_{2}=\partial_{2}{ }^{1} \partial_{4}{ }^{1}-\partial_{3}{ }^{2}
$$

in the commutative polynomial ring $\mathbb{C}\left[\partial_{1}, \ldots, \partial_{4}\right]$.

- The zero set $q_{1}=q_{2}=0$ has two irreducible components, one of degree 3 and mutiplicity 1 , which intersects $\left(\mathbb{C}^{*}\right)^{4}$ (it is the twisted cubic), and another component "at infinity": $\left\{\partial_{2}=\partial_{3}=0\right\}$,

Explanations

- The generating functions F_{i} satisfy the differential equations:
$\left[\Theta_{1}\left(\Theta_{1}-2 \Theta_{2}\right)-x_{1}\left(2 \Theta_{1}-\Theta_{2}+4\right)\left(2 \Theta_{1}-\Theta_{2}+3\right)\right](F)=0$, $\left[\Theta_{2}\left(-2 \Theta_{1}+\Theta_{2}-3\right)-x_{2}\left(2 \Theta_{2}-\Theta_{1}\right)\left(2 \Theta_{2}-\Theta_{1}+1\right)\right](F)=0$.
- Consider the system of binomial equations:

$$
q_{1}=\partial_{1}{ }^{1} \partial_{3}{ }^{1}-\partial_{2}^{2}, q_{2}=\partial_{2}{ }^{1} \partial_{4}{ }^{1}-\partial_{3}{ }^{2}
$$

in the commutative polynomial ring $\mathbb{C}\left[\partial_{1}, \ldots, \partial_{4}\right]$.

- The zero set $q_{1}=q_{2}=0$ has two irreducible components, one of degree 3 and mutiplicity 1 , which intersects $\left(\mathbb{C}^{*}\right)^{4}$ (it is the twisted cubic), and another component "at infinity": $\left\{\partial_{2}=\partial_{3}=0\right\}$, of degree 1 and multiplicity $1=\min \{2 \times 2,1 \times 1\}$.

Explanations

- Consider the system of binomial equations:

$$
q_{1}=\partial_{1}^{1} \partial_{3}^{1}-\partial_{2}^{2}, q_{2}=\partial_{2}^{1} \partial_{4}^{1}-\partial_{3}^{2}
$$

in the commutative polynomial ring $\mathbb{C}\left[\partial_{1}, \ldots, \partial_{4}\right]$.
degree 3 and mutiplicity 1 , which intersects $\left(\mathbb{C}^{*}\right)^{4}$, and another component "at infinity": $\left\{\partial_{2}=\partial_{3}=0\right\}$,

Explanations

- Consider the system of binomial equations:

$$
q_{1}=\partial_{1}^{1} \partial_{3}^{1}-\partial_{2}^{2}, q_{2}=\partial_{2}^{1} \partial_{4}^{1}-\partial_{3}^{2}
$$

in the commutative polynomial ring $\mathbb{C}\left[\partial_{1}, \ldots, \partial_{4}\right]$.

- The zero set $q_{1}=q_{2}=0$ has two irreducible components, one of degree 3 and mutiplicity 1 , which intersects $\left(\mathbb{C}^{*}\right)^{4}$, and another component "at infinity": $\left\{\partial_{2}=\partial_{3}=0\right\}$,

Explanations

- Consider the system of binomial equations:

$$
q_{1}=\partial_{1}^{1} \partial_{3}^{1}-\partial_{2}^{2}, q_{2}=\partial_{2}^{1} \partial_{4}^{1}-\partial_{3}^{2}
$$

in the commutative polynomial ring $\mathbb{C}\left[\partial_{1}, \ldots, \partial_{4}\right]$.

- The zero set $q_{1}=q_{2}=0$ has two irreducible components, one of degree 3 and mutiplicity 1 , which intersects $\left(\mathbb{C}^{*}\right)^{4}$, and another component "at infinity": $\left\{\partial_{2}=\partial_{3}=0\right\}$,

Explanations

- Consider the system of binomial equations:

$$
q_{1}=\partial_{1}^{1} \partial_{3}^{1}-\partial_{2}^{2}, q_{2}=\partial_{2}^{1} \partial_{4}^{1}-\partial_{3}^{2}
$$

in the commutative polynomial ring $\mathbb{C}\left[\partial_{1}, \ldots, \partial_{4}\right]$.

- The zero set $q_{1}=q_{2}=0$ has two irreducible components, one of degree 3 and mutiplicity 1 , which intersects $\left(\mathbb{C}^{*}\right)^{4}$, and another component "at infinity": $\left\{\partial_{2}=\partial_{3}=0\right\}$, of degree 1 and multiplicity $1=\min \{2 \times 2,1 \times 1\}$.
- This multiplicity equals the intersection multiplicity at $(0,0)$ of the system of two binomials in two variables:

$$
p_{1}=\partial_{3}^{a}-\partial_{2}^{b}, p_{2}=\partial_{2}^{c}-\partial_{3}^{d}, \quad \mathbf{a}=\mathbf{1}, \mathbf{b}=\mathbf{2}, \mathbf{c}=\mathbf{1}, \mathbf{d}=\mathbf{2}
$$

Explanations

- Consider the system of binomial equations:

$$
q_{1}=\partial_{1}^{1} \partial_{3}^{1}-\partial_{2}^{2}, q_{2}=\partial_{2}^{1} \partial_{4}^{1}-\partial_{3}^{2}
$$

in the commutative polynomial ring $\mathbb{C}\left[\partial_{1}, \ldots, \partial_{4}\right]$.

- The zero set $q_{1}=q_{2}=0$ has two irreducible components, one of degree 3 and mutiplicity 1 , which intersects $\left(\mathbb{C}^{*}\right)^{4}$, and another component "at infinity": $\left\{\partial_{2}=\partial_{3}=0\right\}$, of degree 1 and multiplicity $1=\min \{2 \times 2,1 \times 1\}$.
- This multiplicity equals the intersection multiplicity at $(0,0)$ of the system of two binomials in two variables:

$$
p_{1}=\partial_{3}^{a}-\partial_{2}^{b}, p_{2}=\partial_{2}^{c}-\partial_{3}^{d}, \quad \mathbf{a}=\mathbf{1}, \mathbf{b}=\mathbf{2}, \mathbf{c}=\mathbf{1}, \mathbf{d}=\mathbf{2}
$$

- The multiplicity of this only (non homogeneous) component at infinity is equal to the dimension of the space of solutions of the recurrences with finite support.

Finite recurrences and polynomial solutions

General picture

Let $B \in \mathbb{Z}^{n \times 2}$ with rows b_{1}, \ldots, b_{n} satisfying $b_{1}+\cdots+b_{n}=0$.

$$
\begin{align*}
P_{i} & =\prod_{b_{j i}<0} \prod_{l=0}^{\left|b_{j i}\right|-1}\left(b_{j} \cdot \theta+c_{j}-l\right) \tag{7}\\
Q_{i} & =\prod_{b_{j i}>0} \prod_{l=0}^{b_{j i}-1}\left(b_{j} \cdot \theta+c_{j}-l\right), \text { and } \tag{8}\\
\mathbf{H}_{\mathbf{i}} & =\mathbf{Q}_{\mathbf{i}}-\mathbf{x}_{\mathbf{i}} \mathbf{P}_{\mathbf{i}} \tag{9}
\end{align*}
$$

where $b_{j} \cdot \theta=\sum_{k=1}^{2} b_{j k} \theta_{x_{k}}$.
The operators H_{i} are called Horn operators and generate the left ideal
Horn (B, c) in the Weyl algebra D_{2}. Call $d_{i}=\sum_{b_{i j}>0} b_{i j}=-\sum_{b_{i j}<0} b_{i j}$ the order of the operator H_{i}.

General picture

Let $B \in \mathbb{Z}^{n \times 2}$ with rows b_{1}, \ldots, b_{n} satisfying $b_{1}+\cdots+b_{n}=0$.

$$
\begin{align*}
P_{i} & =\prod_{b_{j i}<0} \prod_{l=0}^{\left|b_{j i}\right|-1}\left(b_{j} \cdot \theta+c_{j}-l\right) \tag{7}\\
Q_{i} & =\prod_{b_{j i}>0} \prod_{l=0}^{b_{j i}-1}\left(b_{j} \cdot \theta+c_{j}-l\right), \text { and } \tag{8}\\
\mathbf{H}_{\mathbf{i}} & =\mathbf{Q}_{\mathbf{i}}-\mathbf{x}_{\mathbf{i}} \mathbf{P}_{\mathbf{i}} \tag{9}
\end{align*}
$$

where $b_{j} \cdot \theta=\sum_{k=1}^{2} b_{j k} \theta_{x_{k}}$.
The operators H_{i} are called Horn operators and generate the left ideal Horn (\mathcal{B}, c) in the Weyl algebra D_{2}. Call $d_{i}=\sum_{b_{i j}>0} b_{i j}=-\sum_{b_{i j}<0} b_{i j}$ the order of the operator H_{i}.

General picture

Let $B \in \mathbb{Z}^{n \times 2}$ as above and let $A \in \mathbb{Z}^{(n-2) \times n}$ such that the columns $b^{(1)}, b^{(2)}$ of B span $\operatorname{ker}_{\mathbb{Q}}(A)$.
Write any vector $u \in \mathbb{R}^{n}$ as $u=u_{+}-u_{-}$, where $\left(u_{+}\right)_{i}=\max \left(u_{i}, 0\right)$, and
$\left(u_{-}\right)_{i}=-\min \left(u_{i}, 0\right)$.

General picture

Let $B \in \mathbb{Z}^{n \times 2}$ as above and let $A \in \mathbb{Z}^{(n-2) \times n}$ such that the columns $b^{(1)}, b^{(2)}$ of B span $\operatorname{ker}_{\mathbb{Q}}(A)$.
Write any vector $u \in \mathbb{R}^{n}$ as $u=u_{+}-u_{-}$, where $\left(u_{+}\right)_{i}=\max \left(u_{i}, 0\right)$, and
$\left(u_{-}\right)_{i}=-\min \left(u_{i}, 0\right)$.

General picture

Let $B \in \mathbb{Z}^{n \times 2}$ as above and let $A \in \mathbb{Z}^{(n-2) \times n}$ such that the columns $b^{(1)}, b^{(2)}$ of B span $\operatorname{ker}_{\mathbb{Q}}(A)$.
Write any vector $u \in \mathbb{R}^{n}$ as $u=u_{+}-u_{-}$, where $\left(u_{+}\right)_{i}=\max \left(u_{i}, 0\right)$, and $\left(u_{-}\right)_{i}=-\min \left(u_{i}, 0\right)$.

Definition

$$
T_{i}=\partial^{b_{+}^{(i)}}-\partial_{-}^{b_{-}^{(i)}}, \quad i=1,2 .
$$

The left D_{n}-ideal $H_{\mathcal{B}}(c)$ is defined by:

$$
H_{\mathcal{B}}(c)=\left\langle T_{1}, T_{2}\right\rangle+\langle A \cdot \theta-A \cdot c\rangle \subseteq D_{n} .
$$

General picture

Theorem

[D.- Matusevich - Sadykov '05] For generic complex parameters c_{1}, \ldots, c_{n}, the ideals Horn (\mathcal{B}, c) and $H_{\mathcal{B}}(c)$ are holonomic. Moreover,

$$
\operatorname{rank}\left(H_{\mathcal{B}}(c)\right)=\operatorname{rank}(\operatorname{Horn}(\mathcal{B}, c))=d_{1} d_{2}-\sum_{\substack{b_{i}, b_{j} \\ \text { depot }}} \nu_{i j}=g \cdot \operatorname{vol}(A)+\sum_{\substack{b_{i}, b_{j} \\ \text { indepott }}} \nu_{i j},
$$

where the the pairs b_{i}, b_{j} of rows lie in opposite open quadrants of \mathbb{Z}^{2}.

Remarks
Solutions to recurrences with finite support correspond to (Laurent)
polynomial solutions. These solutions come from (non homogeneous) primary components at infinity of the binomial ideal $\left\langle T_{1}, T_{2}\right\rangle$. There are
many linearly independent.

General picture

Theorem

[D.- Matusevich - Sadykov '05] For generic complex parameters c_{1}, \ldots, c_{n}, the ideals Horn (\mathcal{B}, c) and $H_{\mathcal{B}}(c)$ are holonomic. Moreover,

$$
\operatorname{rank}\left(H_{\mathcal{B}}(c)\right)=\operatorname{rank}(\operatorname{Horn}(\mathcal{B}, c))=d_{1} d_{2}-\sum_{\substack{b_{i}, b_{j} \\ \text { depdt }}} \nu_{i j}=g \cdot \operatorname{vol}(A)+\sum_{\substack{b_{i}, b_{j} \\ \text { indepdt }}} \nu_{i j}
$$

where the the pairs b_{i}, b_{j} of rows lie in opposite open quadrants of \mathbb{Z}^{2}.

Remarks

Solutions to recurrences with finite support correspond to (Laurent) polynomial solutions. These solutions come from (non homogeneous) primary components at infinity of the binomial ideal $\left\langle T_{1}, T_{2}\right\rangle$. There are $\sum \nu_{i j}$ many linearly independent.

General picture

Theorem

[D.- Matusevich - Sadykov '05] For generic complex parameters c_{1}, \ldots, c_{n}, the ideals Horn (\mathcal{B}, c) and $H_{\mathcal{B}}(c)$ are holonomic. Moreover,

$$
\operatorname{rank}\left(H_{\mathcal{B}}(c)\right)=\operatorname{rank}(\operatorname{Horn}(\mathcal{B}, c))=d_{1} d_{2}-\sum_{\substack{b_{i}, b_{j} \\ \text { depdt }}} \nu_{i j}=g \cdot \operatorname{vol}(A)+\sum_{\substack{b_{i}, b_{j} \\ \text { indepdt }}} \nu_{i j}
$$

where the the pairs b_{i}, b_{j} of rows lie in opposite open quadrants of \mathbb{Z}^{2}.

Remarks

Solutions to recurrences with finite support correspond to (Laurent) polynomial solutions. These solutions come from (non homogeneous) primary components at infinity of the binomial ideal $\left\langle T_{1}, T_{2}\right\rangle$. There are $\sum \nu_{i j}$ many linearly independent.

General picture

Theorem

[D.- Matusevich - Sadykov '05] For generic complex parameters c_{1}, \ldots, c_{n}, the ideals Horn (\mathcal{B}, c) and $H_{\mathcal{B}}(c)$ are holonomic. Moreover,

$$
\operatorname{rank}\left(H_{\mathcal{B}}(c)\right)=\operatorname{rank}(\operatorname{Horn}(\mathcal{B}, c))=d_{1} d_{2}-\sum_{\substack{b_{i}, b_{j} \\ d e p d t}} \nu_{i j}=g \cdot \operatorname{vol}(A)+\sum_{\substack{b_{i}, b_{j} \\ \text { indepdt }}} \nu_{i j}
$$

where the the pairs b_{i}, b_{j} of rows lie in opposite open quadrants of \mathbb{Z}^{2}.

Remarks

Solutions to recurrences with finite support correspond to (Laurent) polynomial solutions. These solutions come from (non homogeneous) primary components at infinity of the binomial ideal $\left\langle T_{1}, T_{2}\right\rangle$. There are $\sum \nu_{i j}$ many linearly independent. For special parameters a special study is needed, along the lines in [D. - Matusevich and Miller '10].

General phylosophy

General phylosophy

Moral of this story
Key to the answer it the homogenization and translation to the A-side!

Examples of rational bivariate hypergeometric series

The proof in the talk!

is a rational function for all $\left(s_{1}, s_{2}\right) \in \mathbb{N}^{2}$.

$f_{(2,2)}\left(x_{1}, x_{2}\right)=\frac{1-x_{1}-x_{2}}{1-2 x_{1}-2 x_{2}-2 x_{1} x_{2}+x_{1}^{2}+x_{2}^{2}} . \diamond$

Examples of rational bivariate hypergeometric series

The proof in the talk!
Lemma: The series $f_{\left(s_{1}, s_{2}\right)}(x):=\sum_{m \in \mathbb{N}^{2}} \frac{\left(s_{1} m_{1}+s_{2} m_{2}\right)!}{\left(s_{1} m_{1}\right)!\left(s_{2} m_{2}\right)!} x_{1}^{m_{1}} x_{2}^{m_{2}}$. is a rational function for all $\left(s_{1}, s_{2}\right) \in \mathbb{N}^{2}$.

Examples of rational bivariate hypergeometric series

The proof in the talk!
Lemma: The series $f_{\left(s_{1}, s_{2}\right)}(x):=\sum_{m \in \mathbb{N}^{2}} \frac{\left(s_{1} m_{1}+s_{2} m_{2}\right)!}{\left(s_{1} m_{1}\right)!\left(s_{2} m_{2}\right)!} x_{1}^{m_{1}} x_{2}^{m_{2}}$. is a rational function for all $\left(s_{1}, s_{2}\right) \in \mathbb{N}^{2}$.
Proof: $f_{(0,0)}\left(x_{1}, x_{2}\right)=\sum_{m \in \mathbb{N}^{2}} x_{1}^{m_{1}} x_{2}^{m_{2}}=\frac{1}{\left(1-x_{1}\right)\left(1-x_{2}\right)}$,

Examples of rational bivariate hypergeometric series

The proof in the talk!
Lemma: The series $f_{\left(s_{1}, s_{2}\right)}(x):=\sum_{m \in \mathbb{N}^{2}} \frac{\left(s_{1} m_{1}+s_{2} m_{2}\right)!}{\left(s_{1} m_{1}\right)!\left(s_{2} m_{2}\right)!} x_{1}^{m_{1}} x_{2}^{m_{2}}$. is a rational function for all $\left(s_{1}, s_{2}\right) \in \mathbb{N}^{2}$.
Proof: $f_{(0,0)}\left(x_{1}, x_{2}\right)=\sum_{m \in \mathbb{N}^{2}} x_{1}^{m_{1}} x_{2}^{m_{2}}=\frac{1}{\left(1-x_{1}\right)\left(1-x_{2}\right)}$,
$f_{(1,1)}(x)=\sum_{m \in \mathbb{N}^{2}} \frac{\left(m_{1}+m_{2}\right)!}{m_{1}!m_{2}!} x_{1}^{m_{1}} x_{2}^{m_{2}}=\frac{1}{1-x_{1}-x_{2}}$,

$f_{(2,2)}\left(x_{1}, x_{2}\right)=\frac{1-x_{1}-x_{2}}{1-2 x_{1}-2 x_{2}-2 x_{1} x_{2}+x_{1}^{2}+x^{2}} . \diamond$

Examples of rational bivariate hypergeometric series

The proof in the talk!
Lemma: The series $f_{\left(s_{1}, s_{2}\right)}(x):=\sum_{m \in \mathbb{N}^{2}} \frac{\left(s_{1} m_{1}+s_{2} m_{2}\right)!}{\left(s_{1} m_{1}\right)!\left(s_{2} m_{2}\right)!} x_{1}^{m_{1}} x_{2}^{m_{2}}$. is a rational function for all $\left(s_{1}, s_{2}\right) \in \mathbb{N}^{2}$.
Proof: $f_{(0,0)}\left(x_{1}, x_{2}\right)=\sum_{m \in \mathbb{N}^{2}} x_{1}^{m_{1}} x_{2}^{m_{2}}=\frac{1}{\left(1-x_{1}\right)\left(1-x_{2}\right)}$,
$f_{(1,1)}(x)=\sum_{m \in \mathbb{N}^{2}} \frac{\left(m_{1}+m_{2}\right)!}{m_{1}!m_{2}!} x_{1}^{m_{1}} x_{2}^{m_{2}}=\frac{1}{1-x_{1}-x_{2}}$,
$f_{(2,2)}\left(x_{1}^{2}, x_{2}^{2}\right)=\sum_{m \in \mathbb{N}^{2}} \frac{\left(2 m_{1}+2 m_{2}\right)!}{\left(2 m_{1}\right)!\left(2 m_{2}\right)!} x_{1}^{2 m_{1}} x_{2}^{2 m_{2}}=$
$\frac{\frac{1}{4}\left(f(1,1)\left(x_{1}, x_{2}\right)+f(1,1)\right.}{1-x_{1}^{2}-x_{2}^{2}}$
$1-2 x_{1}^{2}-2 x_{2}^{2}-2 x_{1}^{2} x_{2}^{2}+x_{1}^{4}+x_{2}^{4}$
$f_{(2,2)}\left(x_{1}, x_{2}\right)=\frac{1-x_{1}-x_{2}}{1-2 x_{1}-2 x_{2}-2 x_{1} x_{2}+x_{1}^{2}+x^{2}} . \diamond$

Examples of rational bivariate hypergeometric series

The proof in the talk!

Lemma: The series $f_{\left(s_{1}, s_{2}\right)}(x):=\sum_{m \in \mathbb{N}^{2}} \frac{\left(s_{1} m_{1}+s_{2} m_{2}\right)!}{\left(s_{1} m_{1}\right)!\left(s_{2} m_{2}\right)!} x_{1}^{m_{1}} x_{2}^{m_{2}}$. is a rational function for all $\left(s_{1}, s_{2}\right) \in \mathbb{N}^{2}$.
Proof: $f_{(0,0)}\left(x_{1}, x_{2}\right)=\sum_{m \in \mathbb{N}^{2}} x_{1}^{m_{1}} x_{2}^{m_{2}}=\frac{1}{\left(1-x_{1}\right)\left(1-x_{2}\right)}$,
$f_{(1,1)}(x)=\sum_{m \in \mathbb{N}^{2}} \frac{\left(m_{1}+m_{2}\right)!}{m_{1}!m_{2}!} x_{1}^{m_{1}} x_{2}^{m_{2}}=\frac{1}{1-x_{1}-x_{2}}$,
$f_{(2,2)}\left(x_{1}^{2}, x_{2}^{2}\right)=\sum_{m \in \mathbb{N}^{2}} \frac{\left(2 m_{1}+2 m_{2}\right)!}{\left(2 m_{1}\right)!\left(2 m_{2}\right)!} x_{1}^{2 m_{1}} x_{2}^{2 m_{2}}=$
$\frac{1}{4}\left(f_{(1,1)}\left(x_{1}, x_{2}\right)+f_{(1,1)}\left(-x_{1}, x_{2}\right)+f_{(1,1)}\left(x_{1},-x_{2}\right)+f_{(1,1)}\left(-x_{1},-x_{2}\right)\right)=$ $\frac{1-x_{1}^{2}-x_{2}^{2}}{1-2 x_{1}^{2}-2 x_{2}^{2}-2 x_{1}^{2} x_{2}^{2}+x_{1}^{4}+x_{2}^{4}}$,

Examples of rational bivariate hypergeometric series

The proof in the talk!

Lemma: The series $f_{\left(s_{1}, s_{2}\right)}(x):=\sum_{m \in \mathbb{N}^{2}} \frac{\left(s_{1} m_{1}+s_{2} m_{2}\right)!}{\left(s_{1} m_{1}\right)!\left(s_{2} m_{2}\right)!} x_{1}^{m_{1}} x_{2}^{m_{2}}$. is a rational function for all $\left(s_{1}, s_{2}\right) \in \mathbb{N}^{2}$.
Proof: $f_{(0,0)}\left(x_{1}, x_{2}\right)=\sum_{m \in \mathbb{N}^{2}} x_{1}^{m_{1}} x_{2}^{m_{2}}=\frac{1}{\left(1-x_{1}\right)\left(1-x_{2}\right)}$,
$f_{(1,1)}(x)=\sum_{m \in \mathbb{N}^{2}} \frac{\left(m_{1}+m_{2}\right)!}{m_{1}!m_{2}!} x_{1}^{m_{1}} x_{2}^{m_{2}}=\frac{1}{1-x_{1}-x_{2}}$,
$f_{(2,2)}\left(x_{1}^{2}, x_{2}^{2}\right)=\sum_{m \in \mathbb{N}^{2}} \frac{\left(2 m_{1}+2 m_{2}\right)!}{\left(2 m_{1}\right)!\left(2 m_{2}\right)!} x_{1}^{2 m_{1}} x_{2}^{2 m_{2}}=$
$\frac{1}{4}\left(f_{(1,1)}\left(x_{1}, x_{2}\right)+f_{(1,1)}\left(-x_{1}, x_{2}\right)+f_{(1,1)}\left(x_{1},-x_{2}\right)+f_{(1,1)}\left(-x_{1},-x_{2}\right)\right)=$ $\frac{1-x_{1}^{2}-x_{2}^{2}}{1-2 x_{1}^{2}-2 x_{2}^{2}-2 x_{1}^{2} x_{2}^{2}+x_{1}^{4}+x_{2}^{4}}$,

$$
f_{(2,2)}\left(x_{1}, x_{2}\right)=\frac{1-x_{1}-x_{2}}{1-2 x_{1}-2 x_{2}-2 x_{1} x_{2}+x_{1}^{2}+x_{2}^{2}} . \diamond
$$

Using residues

A second proof!

Proof: The series $f_{\left(s_{1}, s_{2}\right)}(x):=\sum_{m \in \mathbb{N}} \frac{\left(s_{1} m_{1}+s_{2} m_{2}\right)!}{\left(s_{1} m_{1}\right)!\left(s_{2} m_{2}\right)!} x_{1}^{m_{1}} x_{2}^{m_{2}}$. defines a rational function for all $\left(s_{1}, s_{2}\right) \in \mathbb{N}^{2}$ because it equals the following residue:

Using residues

A second proof!

Proof: The series $f_{\left(s_{1}, s_{2}\right)}(x):=\sum_{m \in \mathbb{N}} \frac{\left(s_{1} m_{1}+s_{2} m_{2}\right)!}{\left(s_{1} m_{1}\right)!\left(s_{2} m_{2}\right)!} x_{1}^{m_{1}} x_{2}^{m_{2}}$. defines a rational function for all $\left(s_{1}, s_{2}\right) \in \mathbb{N}^{2}$ because it equals the following residue:

Using residues

A second proof!

Proof: The series $f_{\left(s_{1}, s_{2}\right)}(x):=\sum_{m \in \mathbb{N}^{2} \frac{\left(s_{1} m_{1}+s_{2} m_{2}\right)!}{\left(s_{1} m_{1}\right)!\left(s_{2} m_{2}\right)!} x_{1}^{m_{1}} x_{2}^{m_{2}} \text {. defines a }}$ rational function for all $\left(s_{1}, s_{2}\right) \in \mathbb{N}^{2}$ because it equals the following residue:

$$
\begin{gathered}
f_{\left(s_{1}, s_{2}\right)}(x)=\sum_{\xi_{1}^{s_{1}^{s}}=-x_{1}, \xi_{2}^{s_{2}^{2}}=-x_{2}} \operatorname{Res} \xi\left(\frac{t_{1}^{s_{1}} t_{2}^{2} /\left(t_{1}+t_{2}+1\right)}{\left(x_{1}+t_{1}^{s_{1}}\right)\left(x_{2}+t_{2}^{s_{2}}\right)} \frac{d t_{1}}{t_{1}} \wedge \frac{d t_{2}}{t_{2}}\right)= \\
=\frac{1}{s_{1} s_{2}} \sum_{\xi_{1}^{s_{1}}=-x_{1}, \xi_{2}^{s_{2}}=-x_{2}} \frac{1}{\xi_{1}+\xi_{2}+1} \cdot \diamond
\end{gathered}
$$

Rational bivariate hypergeometric series

Question

When is a hypergeometric series in 2 variables rational?
Let $c^{i}=\left(c_{1}^{i}, c_{2}^{i}\right)$ and $d^{j}=\left(d_{1}^{j}, d_{2}^{j}\right)$ for $i=1, \ldots, r ; j=1, \ldots, s$ be
vectors in \mathbb{N}^{2}. When is the series

the Taylor expansion of a rational function?

Rational bivariate hypergeometric series

Question

When is a hypergeometric series in 2 variables rational?
Let $c^{i}=\left(c_{1}^{i}, c_{2}^{i}\right)$ and $d^{j}=\left(d_{1}^{j}, d_{2}^{j}\right)$ for $i=1, \ldots, r ; j=1, \ldots, s$ be vectors in \mathbb{N}^{2}. When is the series

the Taylor expansion of a rational function?

Rational bivariate hypergeometric series

Question

When is a hypergeometric series in 2 variables rational?
Let $c^{i}=\left(c_{1}^{i}, c_{2}^{i}\right)$ and $d^{j}=\left(d_{1}^{j}, d_{2}^{j}\right)$ for $i=1, \ldots, r ; j=1, \ldots, s$ be vectors in \mathbb{N}^{2}. When is the series

$$
\sum_{m \in \mathbb{N}^{2}} \frac{\prod_{i=1}^{r}\left(c_{1}^{i} m_{1}+c_{2}^{i} m_{2}\right)!}{\prod_{j=1}^{s}\left(d_{1}^{d_{1}^{m}} m_{1}+d_{2}^{\left.j_{2} m_{2}\right)!}\right.} x_{1}^{m_{1}} x_{2}^{m_{2}}
$$

the Taylor expansion of a rational function?

Rational bivariate hypergeometric series

Answer
Theorem:
Let $c^{i}=\left(c_{1}^{i}, c_{2}^{i}\right)$ and $d^{j}=\left(d_{1}^{j}, d_{2}^{j}\right)$ for $i=1, \ldots, r ; j=1, \ldots, s$ be vectors in \mathbb{N}^{2} (with $\sum c^{i}=\sum d^{j}$).
The series $\sum_{m \in \mathbb{N}^{2}} \frac{\prod_{i=1}^{r}\left(c_{1}^{i} m_{1}+c_{2}^{i} m_{2}\right)!}{\prod_{j=1}^{l}\left(d_{1}^{m} m_{1}+d_{2}^{m} m_{2}\right)!} x_{1}^{m_{1}} x_{2}^{m_{2}}$ is the Taylor expansion of
a rational function if and only if it is of the form $f_{\left(s_{1}, s_{2}\right)}(x)$.

Rational bivariate hypergeometric series

Answer

Theorem:
Let $c^{i}=\left(c_{1}^{i}, c_{2}^{i}\right)$ and $d^{j}=\left(d_{1}^{j}, d_{2}^{j}\right)$ for $i=1, \ldots, r ; j=1, \ldots, s$ be vectors in \mathbb{N}^{2} (with $\sum c^{i}=\sum d^{2}$).
The series $\sum_{m \in \mathbb{N} 2} \prod_{i=1}^{r}\left(c_{1}^{d} m_{1}+c_{2}^{d} m_{2}\right)!~\left(d^{1}, c_{i}^{2}\right)!x_{1}^{m} x_{2}^{m_{2}}$ is the Taylor expansion of
a rational function if and only if it is of the form $f_{\left(s_{1}, s_{2}\right)}(x)$.

Rational bivariate hypergeometric series

Answer

Theorem:
Let $c^{i}=\left(c_{1}^{i}, c_{2}^{i}\right)$ and $d^{j}=\left(d_{1}^{j}, d_{2}^{j}\right)$ for $i=1, \ldots, r ; j=1, \ldots, s$ be vectors in \mathbb{N}^{2} (with $\left.\sum c^{i}=\sum d^{j}\right)$.
The series $\sum_{m \in \mathbb{N}^{2}} \prod_{i=1}^{i}\left(c_{1}^{d} m_{1}+c_{2} m_{2}\right)!d_{1}^{m m_{1}} d_{1}^{m_{1}} d_{2}^{m_{2}}$ is the Taylor expansion of
a rational function if and only if it is of the form $f_{\left(s_{1}, s_{2}\right)}(x)$.

Rational bivariate hypergeometric series

Answer

Theorem:
Let $c^{i}=\left(c_{1}^{i}, c_{2}^{i}\right)$ and $d^{j}=\left(d_{1}^{j}, d_{2}^{j}\right)$ for $i=1, \ldots, r ; j=1, \ldots, s$ be
vectors in \mathbb{N}^{2} (with $\sum c^{i}=\sum d^{\prime}$).
The series $\sum_{m \in \mathbb{N}^{2}} \frac{\prod_{i=1}^{r}\left(c_{1}^{c} m_{1}+c_{2}^{c} m_{2}\right)!}{\prod_{j=1}^{j}\left(d_{1}^{1} m_{1}+d_{2}^{d} m_{2}\right)!} x_{1}^{m_{1}} x_{2}^{m_{2}}$ is the Taylor expansion of a rational function if and only if it is of the form $f_{\left(s_{1}, s_{2}\right)}(x)$.

Gessell and Xin's example of a rational bivariate hypergeometric series

Gessell and Xin's example of a rational bivariate hypergeometric series

What if the cone is not the first orthant?
We had

where we are summing over the lattice points in the (pointed) non unimodular convex cone $\mathbb{R}_{\geq 0}(1,2)+\mathbb{R}_{\geq 0}(2,1)$.
Calling $m_{1}=2 m-n, m_{2}=2 n-m$ (so that $m=\frac{2 m_{1}+m_{2}}{3}, n=\frac{m_{1}+2 m_{2}}{3}$):

where $L=\mathbb{Z}(1,2)+\mathbb{Z}(2,1)=\left\{\left(m_{1}, m_{2}\right) \in \mathbb{Z}^{2}: m_{1} \equiv m_{2} \bmod 3\right\}$ and
$u_{1}^{3}=x^{2} y, u_{2}^{3}=x y^{2}$.
The shape of the non zero coefficients is the expected, but the sum is over a sublattice.

Gessell and Xin's example of a rational bivariate hypergeometric series

What if the cone is not the first orthant?

We had

$$
G X(x, y)=\frac{1-x y}{1-x y^{2}-3 x y-x^{2} y}=\sum\binom{m+n}{2 m-n} x^{m} y^{n}
$$

where we are summing over the lattice points in the (pointed) non unimodular convex cone $\mathbb{R}_{\geq 0}(1,2)+\mathbb{R}_{\geq 0}(2,1)$.
Calling m

where $L=\mathbb{Z}(1,2)+\mathbb{Z}(2,1)=\left\{\left(m_{1}, m_{2}\right) \in \mathbb{Z}^{2}: m_{1} \equiv m_{2} \bmod 3\right\}$ and
$u_{1}^{3}=x^{2} y, u_{2}^{3}=x y^{2}$.
The shape of the non zero coefficients is the expected, but the sum is over a sublattice.

Gessell and Xin's example of a rational bivariate hypergeometric series

What if the cone is not the first orthant?

We had

$$
G X(x, y)=\frac{1-x y}{1-x y^{2}-3 x y-x^{2} y}=\sum\binom{m+n}{2 m-n} x^{m} y^{n},
$$

where we are summing over the lattice points in the (pointed) non unimodular convex cone $\mathbb{R}_{\geq 0}(1,2)+\mathbb{R}_{\geq 0}(2,1)$.
Calling m

where $L=\mathbb{Z}(1,2)+\mathbb{Z}(2,1)=\left\{\left(m_{1}, m_{2}\right) \in \mathbb{Z}^{2}: m_{1} \equiv m_{2} \bmod 3\right\}$ and

The shape of the non zero coefficients is the expected, but the sum is over a sublattice.

Gessell and Xin's example of a rational bivariate hypergeometric series

What if the cone is not the first orthant?

We had

$$
G X(x, y)=\frac{1-x y}{1-x y^{2}-3 x y-x^{2} y}=\sum\binom{m+n}{2 m-n} x^{m} y^{n},
$$

where we are summing over the lattice points in the (pointed) non unimodular convex cone $\mathbb{R}_{\geq 0}(1,2)+\mathbb{R}_{\geq 0}(2,1)$.
Calling $m_{1}=2 m-n, m_{2}=2 n-m$ (so that $m=\frac{2 m_{1}+m_{2}}{3}, n=\frac{m_{1}+2 m_{2}}{3}$):

where $L=\mathbb{Z}(1,2)+\mathbb{Z}(2,1)=\left\{\left(m_{1}, m_{2}\right) \in \mathbb{Z}^{2}: m_{1} \equiv m_{2} \bmod 3\right\}$ and

The shape of the non zero coefficients is the expected, but the sum is over a sublattice.

Gessell and Xin's example of a rational bivariate hypergeometric series

What if the cone is not the first orthant?

We had

$$
G X(x, y)=\frac{1-x y}{1-x y^{2}-3 x y-x^{2} y}=\sum\binom{m+n}{2 m-n} x^{m} y^{n}
$$

where we are summing over the lattice points in the (pointed) non unimodular convex cone $\mathbb{R}_{\geq 0}(1,2)+\mathbb{R}_{\geq 0}(2,1)$.
Calling $m_{1}=2 m-n, m_{2}=2 n-m$ (so that $m=\frac{2 m_{1}+m_{2}}{3}, n=\frac{m_{1}+2 m_{2}}{3}$):

$$
\frac{1-x y}{1-x y^{2}-3 x y-x^{2} y}=\sum_{\left(m_{1}, m_{2}\right) \in L \cap \mathbb{N}^{2}} \frac{\left(m_{1}+m_{2}\right)!}{m_{1}!m_{2}!} u_{1}^{m_{1}} u_{2}^{m_{2}},
$$

where $L=\mathbb{Z}(1,2)+\mathbb{Z}(2,1)=\left\{\left(m_{1}, m_{2}\right) \in \mathbb{Z}^{2}: m_{1} \equiv m_{2} \bmod 3\right\}$ and $u_{1}^{3}=x^{2} y, u_{2}^{3}=x y^{2}$.
The shape of the non zero coefficients is the expected, but the sum is over a sublattice.

Gessell and Xin's example of a rational bivariate hypergeometric series

What if the cone is not the first orthant?

We had

$$
G X(x, y)=\frac{1-x y}{1-x y^{2}-3 x y-x^{2} y}=\sum\binom{m+n}{2 m-n} x^{m} y^{n},
$$

where we are summing over the lattice points in the (pointed) non unimodular convex cone $\mathbb{R}_{\geq 0}(1,2)+\mathbb{R}_{\geq 0}(2,1)$.
Calling $m_{1}=2 m-n, m_{2}=2 n-m$ (so that $m=\frac{2 m_{1}+m_{2}}{3}, n=\frac{m_{1}+2 m_{2}}{3}$):

$$
\frac{1-x y}{1-x y^{2}-3 x y-x^{2} y}=\sum_{\left(m_{1}, m_{2}\right) \in L \cap \mathbb{N}^{2}} \frac{\left(m_{1}+m_{2}\right)!}{m_{1}!m_{2}!} u_{1}^{m_{1}} u_{2}^{m_{2}},
$$

where $L=\mathbb{Z}(1,2)+\mathbb{Z}(2,1)=\left\{\left(m_{1}, m_{2}\right) \in \mathbb{Z}^{2}: m_{1} \equiv m_{2} \bmod 3\right\}$ and $u_{1}^{3}=x^{2} y, u_{2}^{3}=x y^{2}$.
The shape of the non zero coefficients is the expected, but the sum is over a sublattice.

The general result

Data

Suppose we are given linear functionals

$$
\ell_{i}\left(m_{1}, m_{2}\right):=\left\langle b_{i},\left(m_{1}, m_{2}\right)\right\rangle+k_{i}, \quad i=1, \ldots, n
$$

where $b_{i} \in \mathbb{Z}^{2} \backslash\{0\}, k_{i} \in \mathbb{Z}$ and $\sum_{i=1}^{n} b_{i}=0$.
Take \mathcal{C} a rational convex cone. The bivariate series:

is called a Horn series.
The coefficients e of ϕ satisfy hypergeometric recurrences: $\mathfrak{f o r} j=1,2$, and any $m \in \mathcal{C} \cap \mathbb{Z}^{2}$ such that $m+e_{j}$ also lies in \mathcal{C} :

$$
\frac{c_{m+e_{j}}}{c_{m}}=\frac{\prod_{b_{i j}<0} \prod_{l=0}^{-b_{i j}+1} \ell_{i}(m)-l}{\prod_{b_{i j}>0} \prod_{l=1}^{b_{i j}} \ell_{i}(m)+l} .
$$

The general result

Data

Suppose we are given linear functionals

$$
\ell_{i}\left(m_{1}, m_{2}\right):=\left\langle b_{i},\left(m_{1}, m_{2}\right)\right\rangle+k_{i}, \quad i=1, \ldots, n
$$

where $b_{i} \in \mathbb{Z}^{2} \backslash\{0\}, k_{i} \in \mathbb{Z}$ and $\sum_{i=1}^{n} b_{i}=0$.
Take \mathcal{C} a rational convex cone. The bivariate series:

is called a Horn series.
The coefficients cm_{m} of ϕ satisfy hypergeometric recurrences: for $j=1,2$, and any $m \in \mathcal{C} \cap \mathbb{Z}^{2}$ such that $m+e_{j}$ also lies in \mathcal{C} :

The general result

Data

Suppose we are given linear functionals

$$
\ell_{i}\left(m_{1}, m_{2}\right):=\left\langle b_{i},\left(m_{1}, m_{2}\right)\right\rangle+k_{i}, \quad i=1, \ldots, n
$$

where $b_{i} \in \mathbb{Z}^{2} \backslash\{0\}, k_{i} \in \mathbb{Z}$ and $\sum_{i=1}^{n} b_{i}=0$.
Take \mathcal{C} a rational convex cone. The bivariate series:

$$
\begin{equation*}
\phi\left(\mathbf{x}_{1}, \mathbf{x}_{\mathbf{2}}\right)=\sum_{m \in \mathcal{C} \cap \mathbb{Z}^{2}} \frac{\prod_{\ell_{i}(m)<0}(-1)^{\ell_{i}(m)}\left(-\ell_{i}(m)-1\right)!}{\prod_{\ell_{j}(m)>0} \ell_{j}(m)!} x_{1}^{m_{1}} x_{2}^{m_{2}} \tag{10}
\end{equation*}
$$

is called a Horn series.
The coefficients c_{m} of ϕ satisfy hypergeometric recurrences: for $j=1,2$, and any $m \in \mathcal{C} \cap \mathbb{Z}^{2}$ such that $m+e_{j}$ also lies in \mathcal{C} :

The general result

Data

Suppose we are given linear functionals

$$
\ell_{i}\left(m_{1}, m_{2}\right):=\left\langle b_{i},\left(m_{1}, m_{2}\right)\right\rangle+k_{i}, \quad i=1, \ldots, n,
$$

where $b_{i} \in \mathbb{Z}^{2} \backslash\{0\}, k_{i} \in \mathbb{Z}$ and $\sum_{i=1}^{n} b_{i}=0$.
Take \mathcal{C} a rational convex cone. The bivariate series:

$$
\begin{equation*}
\phi\left(\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{2}\right)=\sum_{m \in \mathcal{C} \cap \mathbb{Z}^{2}} \frac{\prod_{\ell_{i}(m)<0}(-1)^{\ell_{i}(m)}\left(-\ell_{i}(m)-1\right)!}{\prod_{\ell_{j}(m)>0} \ell_{j}(m)!} x_{1}^{m_{1}} x_{2}^{m_{2}} . \tag{10}
\end{equation*}
$$

is called a Horn series.
The coefficients c_{m} of ϕ satisfy hypergeometric recurrences: for $j=1,2$, and any $m \in \mathcal{C} \cap \mathbb{Z}^{2}$ such that $m+e_{j}$ also lies in \mathcal{C} :

$$
\frac{c_{m+e_{j}}}{c_{m}}=\frac{\prod_{b_{i j}<0} \prod_{l=0}^{-b_{i j}+1} \ell_{i}(m)-l}{\prod_{b_{i j}>0} \prod_{l=1}^{b_{l j}} \ell_{i}(m)+l}
$$

The general result

Theorem
 [Cattani, D.-, R. Villegas '09]
 If the Horn series $\phi\left(\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}\right)$ is a rational function then: either

(i) $n=2 r$ is even and, after reordering we may assume:

$$
=b_{r}+b_{2 r}=0, \text { or }
$$

(ii) B consists of $n=2 r+3$ vectors and, after reordering, we may assume that $b_{1}, \ldots, b_{2 r}$ satisfy (11) and b_{2}
$b_{2 r+3}=-b_{2 r+1}-b_{2 r+2}$, where ν_{1}, ν_{2} are the primitive, integral, inward-pointing normals of \mathcal{C} and s_{1}, s_{2} are positive integers. Moreover, ϕ can be expressed as a residue.

The general result

Theorem
[Cattani, D.-, R. Villegas '09]If the Horn series $\phi\left(\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}\right)$ is a rational function then: either(i) $n=2 r$ is even and, after reordering we may assume:

$$
\begin{equation*}
b_{1}+b_{r+1}=\cdots=b_{r}+b_{2 r}=0, \text { or } \tag{11}
\end{equation*}
$$

(ii) B consists of $n=2 r+3$ vectors and, after reordering, we mayassume that $b_{1}, \ldots, b_{2 r}$ satisfy (11) and b_{2}where ν_{1}, ν_{2} are the primitive, integral,inward-pointing normals of \mathcal{C} and s_{1}, s_{2} are positive integers.

The general result

Theorem

[Cattani, D.-, R. Villegas '09]
If the Horn series $\phi\left(\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}\right)$ is a rational function then: either
(i) $n=2 r$ is even and, after reordering we may assume:

$$
\begin{equation*}
b_{1}+b_{r+1}=\cdots=b_{r}+b_{2 r}=0, \text { or } \tag{11}
\end{equation*}
$$

(ii) B consists of $n=2 r+3$ vectors and, after reordering, we may assume that $b_{1}, \ldots, b_{2 r}$ satisfy (11) and $b_{2 r+1}=s_{1} \nu_{1}, b_{2 r+2}=s_{2} \nu_{2}$, $b_{2 r+3}=-b_{2 r+1}-b_{2 r+2}$, where ν_{1}, ν_{2} are the primitive, integral, inward-pointing normals of \mathcal{C} and s_{1}, s_{2} are positive integers.
Moreover, ϕ can be expressed as a residue.

The general result

Theorem

[Cattani, D.-, R. Villegas '09]
If the Horn series $\phi\left(\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}\right)$ is a rational function then: either
(i) $n=2 r$ is even and, after reordering we may assume:

$$
\begin{equation*}
b_{1}+b_{r+1}=\cdots=b_{r}+b_{2 r}=0, \text { or } \tag{11}
\end{equation*}
$$

(ii) B consists of $n=2 r+3$ vectors and, after reordering, we may assume that $b_{1}, \ldots, b_{2 r}$ satisfy (11) and $b_{2 r+1}=s_{1} \nu_{1}, b_{2 r+2}=s_{2} \nu_{2}$, $b_{2 r+3}=-b_{2 r+1}-b_{2 r+2}$, where ν_{1}, ν_{2} are the primitive, integral, inward-pointing normals of \mathcal{C} and s_{1}, s_{2} are positive integers.
Moreover, ϕ can be expressed as a residue.

The general result

Theorem

[Cattani, D.-, R. Villegas '09]
If the Horn series $\phi\left(\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}\right)$ is a rational function then: either
(i) $n=2 r$ is even and, after reordering we may assume:

$$
\begin{equation*}
b_{1}+b_{r+1}=\cdots=b_{r}+b_{2 r}=0, \text { or } \tag{11}
\end{equation*}
$$

(ii) B consists of $n=2 r+3$ vectors and, after reordering, we may assume that $b_{1}, \ldots, b_{2 r}$ satisfy (11) and $b_{2 r+1}=s_{1} \nu_{1}, b_{2 r+2}=s_{2} \nu_{2}$, $b_{2 r+3}=-b_{2 r+1}-b_{2 r+2}$, where ν_{1}, ν_{2} are the primitive, integral, inward-pointing normals of \mathcal{C} and s_{1}, s_{2} are positive integers.
Moreover, ϕ can be expressed as a residue.

Gessell and Xin's example as a residue

$\phi(x)=G X(-x)=\sum_{m \in \mathcal{C} \cap \mathbb{Z}^{2}}(-1)^{m_{1}+m_{2}}\binom{m_{1}+m_{2}}{2 m_{1}-m_{2}} x_{1}^{m_{1}} x_{2}^{m_{2}}$ is a Horn series.
We read the lattice vectors $b_{1}=(-1,-1), b_{2}=(-1,2), b_{3}=(2,-1)$, and we enlarge them to a configuration B by adding the vectors $b_{4}=(1,0)$ and $b_{5}=(-1,0)$.
B is the Gale dual of the configuration A :

and $\phi(x)$ is the dehomogenization of a toric residue associated to
$f_{1}=z_{1}+z_{2} t+z_{3} t^{2}, f_{2}=z_{4}+z_{5} t^{3}$.
In inhomogeneous coordinates we have the not so nice expression:

Gessell and Xin's example as a residue

$\phi(x)=G X(-x)=\sum_{m \in \mathcal{C} \cap \mathbb{Z}^{2}}(-1)^{m_{1}+m_{2}}\binom{m_{1}+m_{2}}{2 m_{1}-m_{2}} x_{1}^{m_{1}} x_{2}^{m_{2}}$ is a Horn series.
We read the lattice vectors $b_{1}=(-1,-1), b_{2}=(-1,2), b_{3}=(2,-1)$, and we enlarge them to a configuration B by adding the vectors $b_{4}=(1,0)$ and $b_{5}=(-1,0)$.
B is the Gale dual of the configuration A
and $\phi(x)$ is the dehomogenization of a toric residue associated to $f_{1}=z_{1}+z_{2} t+z_{3} t^{2}, f_{2}=z_{4}+z_{5} t^{3}$.
In inhomogeneous coordinates we have the not so nice expression:

Gessell and Xin's example as a residue

$\phi(x)=G X(-x)=\sum_{m \in \mathcal{C} \cap \mathbb{Z}^{2}}(-1)^{m_{1}+m_{2}}\binom{m_{1}+m_{2}}{2 m_{1}-m_{2}} x_{1}^{m_{1}} x_{2}^{m_{2}}$ is a Horn series.
We read the lattice vectors $b_{1}=(-1,-1), b_{2}=(-1,2), b_{3}=(2,-1)$, and we enlarge them to a configuration B by adding the vectors $b_{4}=(1,0)$ and $b_{5}=(-1,0)$.
B is the Gale dual of the configuration A :

$$
A=\left(\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 1 & 2 & 0 & 3
\end{array}\right)
$$

and $\phi(x)$ is the dehomogenization of a toric residue associated to $f_{1}=z_{1}+z_{2} t+z_{3} t^{2}, f_{2}=z_{4}+z_{5} t^{3}$.
In inhomogeneous coordinates we have the not so nice expression:

Gessell and Xin's example as a residue

$\phi(x)=G X(-x)=\sum_{m \in \mathcal{C} \cap \mathbb{Z}^{2}}(-1)^{m_{1}+m_{2}}\binom{m_{1}+m_{2}}{2 m_{1}-m_{2}} x_{1}^{m_{1}} x_{2}^{m_{2}}$ is a Horn series.
We read the lattice vectors $b_{1}=(-1,-1), b_{2}=(-1,2), b_{3}=(2,-1)$, and we enlarge them to a configuration B by adding the vectors $b_{4}=(1,0)$ and $b_{5}=(-1,0)$.
B is the Gale dual of the configuration A :

$$
A=\left(\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 1 & 2 & 0 & 3
\end{array}\right)
$$

and $\phi(x)$ is the dehomogenization of a toric residue associated to $f_{1}=z_{1}+z_{2} t+z_{3} t^{2}, f_{2}=z_{4}+z_{5} t^{3}$.
In inhomogeneous coordinates we have the not so nice expression:

$$
\phi(x)=\sum_{\eta^{3}=-x_{2} / x_{1}} \operatorname{Res}_{\eta}\left(\frac{x_{2} t /\left(x_{2}+x_{2} t-t^{2}\right)}{x_{2}+x_{1} t^{3}} d t\right),
$$

Outline of the proof

A key lemma about Laurent expansions of rational functions + a nice ingredient: the diagonals of a rational bivariate power series define classical hypergeometric algebraic univariate functions. [Polya '22, Furstenberg '67, Safonov '00].

> Number theoretic + monodromy ingredients: we use Theorem M below to reduce to the algebraic hyperg. functions classified by Many previous results on A-hypergeometric functions, allow us to analyze the possible Laurent expansions of rational hypergeometric solutions and to construct rational solutions using toric residues. [Saito-Sturmfels-Takayama '99; Cattani, D.

Outline of the proof

A key lemma about Laurent expansions of rational functions +a nice ingredient: the diagonals of a rational bivariate power series define classical hypergeometric algebraic univariate functions. [Polya '22, Furstenberg '67, Safonov '00].
Number theoretic + monodromy ingredients: we use Theorem M below to reduce to the algebraic hyperg. functions classified by [Beukers-Heckmann '89], [F. R. Villegas '03, Bober '08]

Many previous results on A-hypergeometric functions, allow us to
analyze the possible Laurent expansions of rational
hypergeometric solutions and to construct rational solutions using

Outline of the proof

A key lemma about Laurent expansions of rational functions +a nice ingredient: the diagonals of a rational bivariate power series define classical hypergeometric algebraic univariate functions. [Polya '22, Furstenberg '67, Safonov '00].
Number theoretic + monodromy ingredients: we use Theorem M below to reduce to the algebraic hyperg. functions classified by [Beukers-Heckmann '89], [F. R. Villegas '03, Bober '08]
Many previous results on A-hypergeometric functions, allow us to analyze the possible Laurent expansions of rational hypergeometric solutions and to construct rational solutions using toric residues. [Saito-Sturmfels-Takayama '99; Cattani, D.Sturmfels '01, 02; Cattani - D. '04] .

Diagonals of bivariate series

Given a bivariate power series

$$
\begin{equation*}
f\left(x_{1}, x_{2}\right):=\sum_{n, m \geq 0} a_{m, n} x_{1}^{m} x_{2}^{n} \tag{12}
\end{equation*}
$$

and $\delta=\left(\delta_{1}, \delta_{2}\right) \in \mathbb{Z}_{>0}^{2}$, with $\operatorname{gcd}\left(\delta_{1}, \delta_{2}\right)=1$, we define the δ-diagonal of f as:

$$
\begin{equation*}
f_{\delta}(t):=\sum_{r \geq 0} a_{\delta_{1} r, \delta_{2} r} t^{r} \tag{13}
\end{equation*}
$$

Diagonals of bivariate series

Given a bivariate power series

$$
\begin{equation*}
f\left(x_{1}, x_{2}\right):=\sum_{n, m \geq 0} a_{m, n} x_{1}^{m} x_{2}^{n} \tag{12}
\end{equation*}
$$

and $\delta=\left(\delta_{1}, \delta_{2}\right) \in \mathbb{Z}_{>0}^{2}$, with $\operatorname{gcd}\left(\delta_{1}, \delta_{2}\right)=1$, we define the δ-diagonal of f as:

$$
\begin{equation*}
f_{\delta}(t):=\sum_{r \geq 0} a_{\delta_{1} r, \delta_{2} r} t^{r} \tag{13}
\end{equation*}
$$

Polya '22, Furstenberg '67, Safonov '00

If the series defines a rational function, then for every $\delta=\left(\delta_{1}, \delta_{2}\right) \in \mathbb{Z}_{>0}^{2}$, with $\operatorname{gcd}\left(\delta_{1}, \delta_{2}\right)=1$, the δ-diagonal $f_{\delta}(t)$ is algebraic.

Laurent series of rational functions

Let $p, q \in \mathbb{C}\left[x_{1}, x_{2}\right]$ coprime, $f=p / q, N(q) \subset \mathbb{R}^{2}$ the Newton polytope of q, v_{0} be a vertex of $N(q), v_{1}, v_{2}$ the adjacent vertices, indexed counterclockwise.

Laurent series of rational functions

Let $p, q \in \mathbb{C}\left[x_{1}, x_{2}\right]$ coprime, $f=p / q, N(q) \subset \mathbb{R}^{2}$ the Newton polytope of q, v_{0} be a vertex of $N(q), v_{1}, v_{2}$ the adjacent vertices, indexed counterclockwise.

Laurent series of rational functions

Let $p, q \in \mathbb{C}\left[x_{1}, x_{2}\right]$ coprime, $f=p / q, N(q) \subset \mathbb{R}^{2}$ the Newton polytope of q, v_{0} be a vertex of $N(q), v_{1}, v_{2}$ the adjacent vertices, indexed counterclockwise.
Hence, $N(q) \subset v_{0}+\mathbb{R}_{>0} \cdot\left(v_{1}-v_{0}\right)+\mathbb{R}_{>0} \cdot\left(v_{2}-v_{0}\right)$.

Laurent series of rational functions

Let $p, q \in \mathbb{C}\left[x_{1}, x_{2}\right]$ coprime, $f=p / q, N(q) \subset \mathbb{R}^{2}$ the Newton polytope of q, v_{0} be a vertex of $N(q), v_{1}, v_{2}$ the adjacent vertices, indexed counterclockwise.
Hence, $N(q) \subset v_{0}+\mathbb{R}_{>0} \cdot\left(v_{1}-v_{0}\right)+\mathbb{R}_{>0} \cdot\left(v_{2}-v_{0}\right)$.

Laurent series of rational functions

Let $p, q \in \mathbb{C}\left[x_{1}, x_{2}\right]$ coprime, $f=p / q, N(q) \subset \mathbb{R}^{2}$ the Newton polytope of q, v_{0} be a vertex of $N(q), v_{1}, v_{2}$ the adjacent vertices, indexed counterclockwise.
Hence, $N(q) \subset v_{0}+\mathbb{R}_{>0} \cdot\left(v_{1}-v_{0}\right)+\mathbb{R}_{>0} \cdot\left(v_{2}-v_{0}\right)$.
So, $f(x)$ has a convergent Laurent series expansion with support contained in $x^{w}+\mathcal{C}$ for suitable $w \in \mathbb{Z}^{2}$ [GKZ], where \mathcal{C} is the cone

$$
\mathcal{C}=\mathbb{R}_{\geq 0}\left(v_{1}-v_{0}\right)+\mathbb{R}_{\geq 0}\left(v_{2}-v_{0}\right)
$$

> The support of the series is not contained in any subcone of the form

Laurent series of rational functions

Let $p, q \in \mathbb{C}\left[x_{1}, x_{2}\right]$ coprime, $f=p / q, N(q) \subset \mathbb{R}^{2}$ the Newton polytope of q, v_{0} be a vertex of $N(q), v_{1}, v_{2}$ the adjacent vertices, indexed counterclockwise.
Hence, $N(q) \subset v_{0}+\mathbb{R}_{>0} \cdot\left(v_{1}-v_{0}\right)+\mathbb{R}_{>0} \cdot\left(v_{2}-v_{0}\right)$.
So, $f(x)$ has a convergent Laurent series expansion with support contained in $x^{w}+\mathcal{C}$ for suitable $w \in \mathbb{Z}^{2}$ [GKZ], where \mathcal{C} is the cone

$$
\mathcal{C}=\mathbb{R}_{\geq 0}\left(v_{1}-v_{0}\right)+\mathbb{R}_{\geq 0}\left(v_{2}-v_{0}\right)
$$

Key Lemma

The support of the series is not contained in any subcone of the form $x^{w^{\prime}}+\mathcal{C}^{\prime}$, with \mathcal{C}^{\prime} is properly contained in \mathcal{C}.

Algebraic hypergeometric functions in one variable

$$
\text { Let } v(z):=\sum_{n=0}^{\infty} \frac{\prod_{i=1}^{r}\left(p_{i} n\right)!}{\prod_{j=1}^{s}\left(q_{j} n\right)!} z^{n}, \sum_{i=1}^{r} p_{i}=\sum_{j=1}^{s} q_{j}
$$

- Using Beukers-Heckman '89 it was shown by FRV '03 that v defines an algebraic function if and only the height $d:=s-r$, equals 1 and the coefficients A_{n} are integral for every $n \in \mathbb{N}$.
- BH gave an explicit classification of all algebraic univariate hypergeometric series, from which [FRV, Bober] classified all integral factorial ratio sequences of height 1 .
- Assume that $\operatorname{gcd}\left(p_{1}, \ldots, p_{r}, q_{1}, \ldots, q_{r+1}\right)=1$. Then there exist three infinite families for A_{n} :
and 52 sporadic cases.

Algebraic hypergeometric functions in one variable

$$
\text { Let } v(z):=\sum_{n=0}^{\infty} \frac{\prod_{i=1}^{r}\left(p_{i} n\right)!}{\prod_{j=1}^{j}\left(q_{j} n\right)!} z^{n}, \sum_{i=1}^{r} p_{i}=\sum_{j=1}^{s} q_{j} .
$$

- Using Beukers-Heckman '89 it was shown by FRV '03 that v defines an algebraic function if and only the height $d:=s-r$, equals 1 and the coefficients A_{n} are integral for every $n \in \mathbb{N}$.
- BH gave an explicit classification of all algebraic univariate hypergeometric series, from which [FRV, Bober] classified all integral factorial ratio sequences of height 1.
three infinite families for A_{n} :
Then there exist
and 52 sporadic cases.

Algebraic hypergeometric functions in one variable

$$
\text { Let } v(z):=\sum_{n=0}^{\infty} \frac{\prod_{i=1}^{r}\left(p_{i} n\right)!}{\prod_{j=1}^{j}\left(q_{j} n\right)!} z^{n}, \sum_{i=1}^{r} p_{i}=\sum_{j=1}^{s} q_{j} .
$$

- Using Beukers-Heckman '89 it was shown by FRV '03 that v defines an algebraic function if and only the height $d:=s-r$, equals 1 and the coefficients A_{n} are integral for every $n \in \mathbb{N}$.
- BH gave an explicit classification of all algebraic univariate hypergeometric series, from which [FRV, Bober] classified all integral factorial ratio sequences of height 1 .
- Assume that $\operatorname{gcd}\left(p_{1}, \ldots, p_{r}, q_{1}, \ldots, q_{r+1}\right)=1$. Then there exist three infinite families for A_{n} :
and 52 sporadic cases.

Algebraic hypergeometric functions in one variable

$$
\text { Let } v(z):=\sum_{n=0}^{\infty} \frac{\prod_{i=1}^{r}\left(p_{i} n\right)!}{\prod_{j=1}^{j}\left(q_{j} n\right)!} z^{n}, \sum_{i=1}^{r} p_{i}=\sum_{j=1}^{s} q_{j} .
$$

- Using Beukers-Heckman '89 it was shown by FRV '03 that v defines an algebraic function if and only the height $d:=s-r$, equals 1 and the coefficients A_{n} are integral for every $n \in \mathbb{N}$.
- BH gave an explicit classification of all algebraic univariate hypergeometric series, from which [FRV, Bober] classified all integral factorial ratio sequences of height 1.
- Assume that $\operatorname{gcd}\left(p_{1}, \ldots, p_{r}, q_{1}, \ldots, q_{r+1}\right)=1$. Then there exist three infinite families for A_{n} :

$$
\text { 1. } \frac{((a+b) n)!}{(a n)!(b n)!}, \quad \operatorname{gcd}(a, b)=1,
$$

and 52 sporadic cases.

Algebraic hypergeometric functions in one variable

$$
\text { Let } v(z):=\sum_{n=0}^{\infty} \frac{\prod_{i=1}^{r}\left(p_{i} n\right)!}{\prod_{j=1}^{j}\left(q_{j} n\right)!} z^{n}, \sum_{i=1}^{r} p_{i}=\sum_{j=1}^{s} q_{j} .
$$

- Using Beukers-Heckman '89 it was shown by FRV '03 that v defines an algebraic function if and only the height $d:=s-r$, equals 1 and the coefficients A_{n} are integral for every $n \in \mathbb{N}$.
- BH gave an explicit classification of all algebraic univariate hypergeometric series, from which [FRV, Bober] classified all integral factorial ratio sequences of height 1.
- Assume that $\operatorname{gcd}\left(p_{1}, \ldots, p_{r}, q_{1}, \ldots, q_{r+1}\right)=1$. Then there exist three infinite families for A_{n} :

$$
\begin{aligned}
& \text { 1. } \frac{((a+b) n)!}{(a n)!(b n)!}, \quad \operatorname{gcd}(a, b)=1, \\
& \text { 2. } \frac{(2(a+b) n)!(b n)!}{((a+b) n)!(2 b n)!(a n)!}, \quad \operatorname{gcd}(a, b)=1,
\end{aligned}
$$

[^0]
Algebraic hypergeometric functions in one variable

$$
\text { Let } v(z):=\sum_{n=0}^{\infty} \frac{\prod_{i=1}^{r}\left(p_{i} n\right)!}{\prod_{j=1}^{j}\left(q_{j} n\right)!} z^{n}, \sum_{i=1}^{r} p_{i}=\sum_{j=1}^{s} q_{j} .
$$

- Using Beukers-Heckman '89 it was shown by FRV '03 that v defines an algebraic function if and only the height $d:=s-r$, equals 1 and the coefficients A_{n} are integral for every $n \in \mathbb{N}$.
- BH gave an explicit classification of all algebraic univariate hypergeometric series, from which [FRV, Bober] classified all integral factorial ratio sequences of height 1.
- Assume that $\operatorname{gcd}\left(p_{1}, \ldots, p_{r}, q_{1}, \ldots, q_{r+1}\right)=1$. Then there exist three infinite families for A_{n} :

1. $\frac{((a+b) n)!}{(a n)!(b n)!}, \quad \operatorname{gcd}(a, b)=1$,
2. $\frac{(2(a+b) n)!(b n)!}{((a+b) n)!(2 b n)!(a n)!}, \quad \operatorname{gcd}(a, b)=1$,
3. $\frac{(2 a n)!(2 b n)!}{(a n)!(b n)!((a+b) n)!}, \quad \operatorname{gcd}(a, b)=1$,

Algebraic hypergeometric functions in one variable

$$
\text { Let } v(z):=\sum_{n=0}^{\infty} \frac{\prod_{i=1}^{r}\left(p_{i} n\right)!}{\prod_{j=1}^{j}\left(q_{j} n\right)!} z^{n}, \sum_{i=1}^{r} p_{i}=\sum_{j=1}^{s} q_{j} .
$$

- Using Beukers-Heckman '89 it was shown by FRV '03 that v defines an algebraic function if and only the height $d:=s-r$, equals 1 and the coefficients A_{n} are integral for every $n \in \mathbb{N}$.
- BH gave an explicit classification of all algebraic univariate hypergeometric series, from which [FRV, Bober] classified all integral factorial ratio sequences of height 1.
- Assume that $\operatorname{gcd}\left(p_{1}, \ldots, p_{r}, q_{1}, \ldots, q_{r+1}\right)=1$. Then there exist three infinite families for A_{n} :

$$
\begin{aligned}
& \text { 1. } \frac{((a+b) n)!}{(a n)!(b n)!}, \quad \operatorname{gcd}(a, b)=1, \\
& \text { 2. } \frac{(2(a+b))!(b n)!}{((a+b) n)!(2 b)!(a n)!}, \quad \operatorname{gcd}(a, b)=1, \\
& \text { 3. } \frac{(2 a n)!(2 b n)!}{(a n)!(b n)!((a+b) n)!}, \quad \operatorname{gcd}(a, b)=1,
\end{aligned}
$$

and 52 sporadic cases.

Theorem M

In our context, (dehomogenized) series of the form
$u(z)=\sum_{n=0}^{\infty} \frac{\prod_{i=1}^{i}\left(p_{i} n+k_{i}\right)!}{\prod_{j=1}\left(q_{j} n\right)!} z^{n}, \quad k_{i} \in \mathbb{N}$ occur (with $\sum_{i=1}^{r} p_{i}=\sum_{j=1}^{s} q_{j}$).
Calling $A_{n}=\frac{\prod_{i=1}^{j}\left(p_{i n}\right)!}{\left.\prod_{i=1}^{j\left(q_{j}\right)!}\right)}$, the coefficients of u equal $h(n) A_{n}$, with h a polynomial.

Proof uses monodromy as well as number theoretic arguments.

Theorem M

In our context, (dehomogenized) series of the form
$u(z)=\sum_{n=0}^{\infty} \frac{\prod_{i=1}^{r}\left(p_{i} n+k_{i}\right)!}{\prod_{j=1}\left(q_{j} n\right)!} z^{n}, \quad k_{i} \in \mathbb{N}$ occur (with $\left.\sum_{i=1}^{r} p_{i}=\sum_{j=1}^{s} q_{j}\right)$.
Calling $A_{n}=\frac{\prod_{i=1}^{r}\left(p_{n} n\right)!}{\prod_{j=1}\left(q_{j} n\right)!}$, the coefficients of u equal $h(n) A_{n}$, with h a polynomial.

Theorem

$$
u(z):=\sum_{n \geq 0} h(n) A_{n} z^{n}, \quad v(z):=\sum_{n \geq 0} A_{n} z^{n},
$$

(i) The series $u(z)$ is algebraic if and only if $v(z)$ is algebraic.
(ii) If u is rational then $A_{n}=1$ for all n and $v(z)=\frac{1}{1-z}$.

Proof uses monodromy as well as number theoretic arguments.

So far, so good

... but how we figured out the statement of the general result and how to guess the corresponding statement in dimensions 3 and higher?

A-hypergeometric systems

Following [Gel'fand, Kapranov and Zelevinsky '87,'89,'90] we associate to a matrix $A \in \mathbb{Z}^{d \times n}$ and a vector $\beta \in \mathbb{C}^{d}$ a left ideal in the Weyl algebra in n variables:

The A-hypergeometric system with parameter β is the left ideal $H_{A}(\beta)$ in the Weyl algebra D_{n} generated by the toric operators $\partial^{u}-\partial^{v}$, for all $u, v \in \mathbb{N}^{n}$ such that $A u=A v$, and the Euler operators $\sum_{j=1}^{n} a_{i j} z_{j} \partial_{j}-\beta_{j}$ for $i=1, \ldots, d$. Note that the binomial operators generate the whole toric ideal I_{A}.

- The Euler operators impose A-homogeneity to the solutions
- The toric operators impose recurrences on the coefficients of (Puiseux) series solutions.

A-hypergeometric systems

Following [Gel'fand, Kapranov and Zelevinsky '87,'89,'90] we associate to a matrix $A \in \mathbb{Z}^{d \times n}$ and a vector $\beta \in \mathbb{C}^{d}$ a left ideal in the Weyl algebra in n variables:

The A-hypergeometric system with parameter β is the left ideal $H_{A}(\beta)$ in the Weyl algebra D_{n} generated by the toric operators $\partial^{u}-\partial^{v}$, for all $u, v \in \mathbb{N}^{n}$ such that $A u=A v$, and the Euler operators $\sum_{j=1}^{n} a_{i j} z_{j} \partial_{j}-\beta_{i}$ for $i=1, \ldots, d$.

Note that the binomial operators generate the whole toric ideal I_{A}

- The Euler operators impose A-homogeneity to the solutions
- The toric operators impose recurrences on the coefficients of (Fuiseux) series solutions.

A-hypergeometric systems

Following [Gel'fand, Kapranov and Zelevinsky '87,'89,'90] we associate to a matrix $A \in \mathbb{Z}^{d \times n}$ and a vector $\beta \in \mathbb{C}^{d}$ a left ideal in the Weyl algebra in n variables:

The A-hypergeometric system with parameter β is the left ideal $H_{A}(\beta)$ in the Weyl algebra D_{n} generated by the toric operators $\partial^{u}-\partial^{v}$, for all $u, v \in \mathbb{N}^{n}$ such that $A u=A v$, and the Euler operators $\sum_{j=1}^{n} a_{i j} z_{j} \partial_{j}-\beta_{i}$ for $i=1, \ldots, d$.

Note that the binomial operators generate the whole toric ideal I_{A}.

- The Euler operators impose A-homogeneity to the solutions
- The toric operators impose recurrences on the coefficients of (Puiseux) series solutions.

A-hypergeometric systems

Following [Gel'fand, Kapranov and Zelevinsky '87,'89,'90] we associate to a matrix $A \in \mathbb{Z}^{d \times n}$ and a vector $\beta \in \mathbb{C}^{d}$ a left ideal in the Weyl algebra in n variables:

The A-hypergeometric system with parameter β is the left ideal $H_{A}(\beta)$ in the Weyl algebra D_{n} generated by the toric operators $\partial^{u}-\partial^{v}$, for all $u, v \in \mathbb{N}^{n}$ such that $A u=A v$, and the Euler operators $\sum_{j=1}^{n} a_{i j} z_{j} \partial_{j}-\beta_{i}$ for $i=1, \ldots, d$.

Note that the binomial operators generate the whole toric ideal I_{A}.

- The Euler operators impose A-homogeneity to the solutions
- The toric operators impose recurrences on the coefficients of (Puiseux) series solutions.

A-hypergeometric systems

Following [Gel'fand, Kapranov and Zelevinsky '87,'89,'90] we associate to a matrix $A \in \mathbb{Z}^{d \times n}$ and a vector $\beta \in \mathbb{C}^{d}$ a left ideal in the Weyl algebra in n variables:

The A-hypergeometric system with parameter β is the left ideal $H_{A}(\beta)$ in the Weyl algebra D_{n} generated by the toric operators $\partial^{u}-\partial^{v}$, for all $u, v \in \mathbb{N}^{n}$ such that $A u=A v$, and the Euler operators $\sum_{j=1}^{n} a_{i j} z_{j} \partial_{j}-\beta_{i}$ for $i=1, \ldots, d$.

Note that the binomial operators generate the whole toric ideal I_{A}.

- The Euler operators impose A-homogeneity to the solutions
- The toric operators impose recurrences on the coefficients of (Puiseux) series solutions.

Gauss functions, revisited GKZ style

Consider the configuration in \mathbb{R}^{3}

Gauss functions, revisited GKZ style

Consider the configuration in \mathbb{R}^{3}

$$
\begin{gathered}
A=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right) . \\
\operatorname{ker}_{\mathbb{Z}}(A)=\langle(1,1,-1,-1)\rangle \quad(1,1,-1,-1)=(1,1,0,0)-(0,0,1,1)
\end{gathered}
$$

Gauss functions, revisited GKZ style

Consider the configuration in \mathbb{R}^{3}

$$
A=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right)
$$

$$
\operatorname{ker}_{\mathbb{Z}}(A)=\langle(1,1,-1,-1)\rangle \quad(1,1,-1,-1)=(1,1,0,0)-(0,0,1,1)
$$

- The following GKZ-hypergeometric system of equations in four variables $x_{1}, x_{2}, x_{3}, x_{4}$ is a nice encoding for Gauss equation in one variable:

$$
\left\{\begin{array}{rlc}
\left(\partial_{1} \partial_{2}-\partial_{3} \partial_{4}\right)(\varphi) & =0 \\
\left(x_{1} \partial_{1}+x_{2} \partial_{2}+x_{3} \partial_{3}+x_{4} \partial_{4}\right)(\varphi) & =\beta_{1} \varphi \\
\left(x_{2} \partial_{2}+x_{3} \partial_{3}\right)(\varphi) & =\beta_{2 \varphi} \\
\left(x_{2} \partial_{2}+x_{4} \partial_{4}\right)(\varphi) & =\beta_{3} \varphi
\end{array}\right.
$$

Gauss functions, revisited GKZ style

Gauss functions, revisited GKZ style

$$
\left\{\begin{align*}
\left(\partial_{1} \partial_{2}-\partial_{3} \partial_{4}\right)(\varphi) & =0 \tag{14}\\
\left(x_{1} \partial_{1}+x_{2} \partial_{2}+x_{3} \partial_{3}+x_{4} \partial_{4}\right)(\varphi) & =\beta_{1} \varphi \\
\left(x_{2} \partial_{2}+x_{3} \partial_{3}\right)(\varphi) & =\beta_{2} \varphi \\
\left(x_{2} \partial_{2}+x_{4} \partial_{4}\right)(\varphi) & =\beta_{3} \varphi
\end{align*}\right.
$$

Gauss functions, revisited GKZ style

$$
\left\{\begin{array}{rlc}
\left(\partial_{1} \partial_{2}-\partial_{3} \partial_{4}\right)(\varphi) & =0 \tag{14}\\
\left(x_{1} \partial_{1}+x_{2} \partial_{2}+x_{3} \partial_{3}+x_{4} \partial_{4}\right)(\varphi) & =\beta_{1} \varphi \\
\left(x_{2} \partial_{2}+x_{3} \partial_{3}\right)(\varphi) & =\beta_{2 \varphi} \varphi \\
\left(x_{2} \partial_{2}+x_{4} \partial_{4}\right)(\varphi) & =\beta_{3 \varphi} \varphi
\end{array}\right.
$$

- Given any $\left(\beta_{1}, \beta_{2}, \beta_{3}\right)$ and $\mathbf{v} \in \mathbb{C}^{n}$ such that $A \cdot \mathbf{v}=\left(\beta_{1}, \beta_{2}, \beta_{3}\right)$ and $v_{1}=0$, any solution φ of (14) can be written as

$$
\varphi(x)=x^{v} f\left(\frac{x_{1} x_{2}}{x_{3} x_{4}}\right)
$$

where $f(z)$ satisfies Gauss equation with

$$
\alpha=v_{2}, \beta=v_{3}, \gamma=v_{4}+1
$$

A-hypergeometric systems

Some features

- A-hypergeometric systems are homogeneous versions of classical hypergeometric systems in $n-d$ variables $(d=\operatorname{rank}(A))$.
- Combinatorially defined in terms of configurations.
- Closely related to toric geometry.
- One may use algorithmic and computational techniques [Saito, Sturmfels, Takayama '99].
- $H_{A}(\beta)$ is always holonomic and it has regular singularities iff A is regular [GKZ, Adolphson, Hotta, Schulze-Walther]
- The singular locus of the hypergeometric D_{n}-module $D_{n} / H_{A}(\beta)$ equals the zero locus of the principal A-determinant E_{A}, whose irreducible factors are the sparse discriminants $D_{A^{\prime}}$ corresponding to the facial subsets A^{\prime} of $A[G K Z]$ including D_{A}.

A-hypergeometric systems

Some features

- A-hypergeometric systems are homogeneous versions of classical hypergeometric systems in $n-d$ variables $(d=\operatorname{rank}(A))$.
- Combinatorially defined in terms of configurations.
- Closely related to toric geometry.
- One may use algorithmic and computational techniques [Saito, Sturmfels, Takayama '99].
- $H_{A}(\beta)$ is always holonomic and it has regular singularities iff A is regular [GKZ, Adolphson, Hotta, Schulze-Walther]
- The singular locus of the hypergeometric $D_{n}-$ module $D_{n} / H_{A}(\beta)$ equals the zero locus of the principal A-determinant E_{A}, whose irreducible factors are the sparse discriminants $D_{A^{\prime}}$ corresponding to the facial subsets A^{\prime} of $A[G K Z]$ including D_{A}

A-hypergeometric systems

Some features

- A-hypergeometric systems are homogeneous versions of classical hypergeometric systems in $n-d$ variables $(d=\operatorname{rank}(A))$.
- Combinatorially defined in terms of configurations.
- Closely related to toric geometry.
- One may use algorithmic and computational techniques [Saito, Sturmfels, Takayama '99].
- $H_{A}(\beta)$ is always holonomic and it has regular singularities iff A is regular [GKZ, Adolphson, Hotta, Schulze-Walther]
- The singular locus of the hypergeometric D_{n}-module $D_{n} / H_{A}(\beta)$ equals the zero locus of the principal A-determinant E_{A}, whose irreducible factors are the sparse discriminants $D_{A^{\prime}}$ corresponding to the facial subsets A^{\prime} of $A[G K Z]$ including D_{A}

A-hypergeometric systems

Some features

- A-hypergeometric systems are homogeneous versions of classical hypergeometric systems in $n-d$ variables $(d=\operatorname{rank}(A))$.
- Combinatorially defined in terms of configurations.
- Closely related to toric geometry.
- One may use algorithmic and computational techniques [Saito, Sturmfels, Takayama '99].
- $H_{\wedge}(\beta)$ is alwavs holonomic and it has regular singularities iff A is regular [GKZ, Adolphson, Hotta, Schulze-Walther]
- The singular locus of the hypergeometric D_{n}-module $D_{n} / H_{A}(\beta)$ equals the zero locus of the principal A-determinant E_{A}, whose irreducible faciors are the sparse discriminants $D_{A^{\prime}}$ corresponding to the facial subsets A^{\prime} of $A[G K Z]$ including D_{A}

A-hypergeometric systems

Some features

- A-hypergeometric systems are homogeneous versions of classical hypergeometric systems in $n-d$ variables $(d=\operatorname{rank}(A))$.
- Combinatorially defined in terms of configurations.
- Closely related to toric geometry.
- One may use algorithmic and computational techniques [Saito, Sturmfels, Takayama '99].
- The singular locus of the hypergeometric D_{n}-module $D_{n} / H_{A}(\beta)$ equals the zero locus of the orincibal A-determinant E_{A}. whose irreducible factors are the sparse discriminants $D_{A^{\prime}}$ corresponding to the facial subsets A^{\prime} of $A[G K Z]$ including D_{A}

A-hypergeometric systems

Some features

- A-hypergeometric systems are homogeneous versions of classical hypergeometric systems in $n-d$ variables $(d=\operatorname{rank}(A))$.
- Combinatorially defined in terms of configurations.
- Closely related to toric geometry.
- One may use algorithmic and computational techniques [Saito, Sturmfels, Takayama '99].
- $H_{A}(\beta)$ is always holonomic and it has regular singularities iff A is regular [GKZ, Adolphson, Hotta, Schulze-Walther]
- The singular locus of the hypergeometric D_{n}-module $D_{n} / H_{A}(\beta)$ equals the zero locus of the principal A-determinant E_{A}, whose irreducible factors are the sparse discriminants $D_{A^{\prime}}$ corresponding to the facial subsets A^{\prime} of A [GKZZ including D_{A}

A-hypergeometric systems

Some features

- A-hypergeometric systems are homogeneous versions of classical hypergeometric systems in $n-d$ variables $(d=\operatorname{rank}(A))$.
- Combinatorially defined in terms of configurations.
- Closely related to toric geometry.
- One may use algorithmic and computational techniques [Saito, Sturmfels, Takayama '99].
- $H_{A}(\beta)$ is always holonomic and it has regular singularities iff A is regular [GKZ, Adolphson, Hotta, Schulze-Walther]
- The singular locus of the hypergeometric D_{n}-module $D_{n} / H_{A}(\beta)$ equals the zero locus of the principal A-determinant E_{A}, whose irreducible factors are the sparse discriminants $D_{A^{\prime}}$ corresponding to the facial subsets A^{\prime} of $A[G K Z]$ including D_{A}.

Theorems/Conjectures about A-hypergeometric systems

GKZ-definition of multivariate hypergeometric functions gives a combinatorial meaning to parameters and a geometric meaning to solutions.

Theorems/Conjectures about A-hypergeometric systems

GKZ-definition of multivariate hypergeometric functions gives a combinatorial meaning to parameters and a geometric meaning to solutions.

Theorems/Conjectures about A-hypergeometric systems

GKZ-definition of multivariate hypergeometric functions gives a combinatorial meaning to parameters and a geometric meaning to solutions.

Rational A-hypergeometric functions

- We studied the constraints imposed on a regular A by the existence of stable rational A-hypergeometric functions; essentially, functions with singularities along the discriminant locus D_{A}
- We proved that "general" configurations A do NOT admit such rational functions [Cattani-D.-Sturmfels '01] and gave a conjectural characterization of the configurations and of the shape of the rational functions in terms of essential Cayley configurations and toric residues.
- All codimension 1 configurations [CDS '01], dimension 1

Theorems/Conjectures about A-hypergeometric systems

GKZ-definition of multivariate hypergeometric functions gives a combinatorial meaning to parameters and a geometric meaning to solutions.

Rational A-hypergeometric functions

- We studied the constraints imposed on a regular A by the existence of stable rational A-hypergeometric functions; essentially, functions with singularities along the discriminant locus D_{A}.
- We proved that configurations A do admit such rational functions [Cattani-D.-Sturmfels '01] and gave a conjectural characterization of the configurations and of the shape of the rational functions in terms of essential Cayley configurations and toric residues.
- All codimension 1 configurations [CDS '01], dimension 1

\square

Theorems/Conjectures about A-hypergeometric systems

GKZ-definition of multivariate hypergeometric functions gives a combinatorial meaning to parameters and a geometric meaning to solutions.

Rational A-hypergeometric functions

- We studied the constraints imposed on a regular A by the existence of stable rational A-hypergeometric functions; essentially, functions with singularities along the discriminant locus D_{A}.
- We proved that "general" configurations A do NOT admit such rational functions [Cattani-D.-Sturmfels '01] and gave a conjectural characterization of the configurations and of the shape of the rational functions in terms of essential Cayley configurations and toric residues.
- All codimension 1 configurations
dimension 1
Lawrence configurations
fourfolds in codimension 2

Theorems/Conjectures about A-hypergeometric systems

GKZ-definition of multivariate hypergeometric functions gives a combinatorial meaning to parameters and a geometric meaning to solutions.

Rational A-hypergeometric functions

- We studied the constraints imposed on a regular A by the existence of stable rational A-hypergeometric functions; essentially, functions with singularities along the discriminant locus D_{A}.
- We proved that "general" configurations A do NOT admit such rational functions [Cattani-D.-Sturmfels '01] and gave a conjectural characterization of the configurations and of the shape of the rational functions in terms of essential Cayley configurations and toric residues.
- All codimension 1 configurations [CDS '01], dimension 1 [Cattani-D'Andrea-D. '99] and 2 [CDS '01], Lawrence configurations [CDS '02], fourfolds in \mathbb{P}^{7} [Cattani-D. '04], codimension 2 [CDRV '09].

Cayley configurations

Definition

A configuration $A \subset \mathbb{Z}^{d}$ is said to be a Cayley configuration if there exist vector configurations A_{1}, \ldots, A_{k+1} in \mathbb{Z}^{r} such that -up to affine equivalence-

$$
\begin{equation*}
A=\left\{e_{1}\right\} \times A_{1} \cup \cdots \cup\left\{e_{k+1}\right\} \times A_{k+1} \subset \mathbb{Z}^{k+1} \times \mathbb{Z}^{r}, \tag{15}
\end{equation*}
$$

where e_{1}, \ldots, e_{k+1} is the standard basis of \mathbb{Z}^{k+1}.
A Cayley configuration is a Lawenco configuration if all the configurations A_{i} consist of exactly two points.

Cayley configurations

Definition

A configuration $A \subset \mathbb{Z}^{d}$ is said to be a Cayley configuration if there exist vector configurations A_{1}, \ldots, A_{k+1} in \mathbb{Z}^{r} such that -up to affine equivalence-

$$
\begin{equation*}
A=\left\{e_{1}\right\} \times A_{1} \cup \cdots \cup\left\{e_{k+1}\right\} \times A_{k+1} \subset \mathbb{Z}^{k+1} \times \mathbb{Z}^{r} \tag{15}
\end{equation*}
$$

where e_{1}, \ldots, e_{k+1} is the standard basis of \mathbb{Z}^{k+1}.
A Cayley configuration is a Lawrence configuration if all the configurations A_{i} consist of exactly two points.

Cayley configurations

Definition

A configuration $A \subset \mathbb{Z}^{d}$ is said to be a Cayley configuration if there exist vector configurations A_{1}, \ldots, A_{k+1} in \mathbb{Z}^{r} such that -up to affine equivalence-

$$
\begin{equation*}
A=\left\{e_{1}\right\} \times A_{1} \cup \cdots \cup\left\{e_{k+1}\right\} \times A_{k+1} \subset \mathbb{Z}^{k+1} \times \mathbb{Z}^{r} \tag{15}
\end{equation*}
$$

where e_{1}, \ldots, e_{k+1} is the standard basis of \mathbb{Z}^{k+1}.
A Cayley configuration is a Lawrence configuration if all the configurations A_{i} consist of exactly two points.

Cayley configurations

Definition

A Cayley configuration is essential if $k=r$ and the Minkowski sum $\sum_{i \in I} A_{i}$ has affine dimension at least $|I|$ for every proper subset I of $\{1, \ldots, r+1\}$.

- For a codimension-two essential Cayley configuration A, r of the configurations A_{i}, say A_{1}, \ldots, A_{r}, must consist of two vectors and the remaining one, A_{r+1}, must consist of three vectors.
- To an essential Cayley configuration we associate a family of $r+1$ generic polynomials in r variables with supports A_{i}, such that any r of them intersect in a positive number of points. Adding local residues over this points gives a rational function!

Cayley configurations

Definition

A Cayley configuration is essential if $k=r$ and the Minkowski sum $\sum_{i \in I} A_{i}$ has affine dimension at least $|I|$ for every proper subset I of $\{1, \ldots, r+1\}$.

- For a codimension-two essential Cayley configuration A, r of the configurations A_{i}, say A_{1}, \ldots, A_{r}, must consist of two vectors and the remaining one, A_{r+1}, must consist of three vectors.
- To an essential Cayley configuration we associate a family of $r+1$ generic polynomials in r variables with supports A_{i}, such that any r of them intersect in a positive number of points. Adding local residues over this points gives a rational function!

Cayley configurations

Definition

A Cayley configuration is essential if $k=r$ and the Minkowski sum $\sum_{i \in I} A_{i}$ has affine dimension at least $|I|$ for every proper subset I of $\{1, \ldots, r+1\}$.

- For a codimension-two essential Cayley configuration A, r of the configurations A_{i}, say A_{1}, \ldots, A_{r}, must consist of two vectors and the remaining one, A_{r+1}, must consist of three vectors.
- To an essential Cayley configuration we associate a family of $r+1$ generic polynomials in r variables with supports A_{i}, such that any r of them intersect in a positive number of points. Adding local residues over this points gives a rational function!

Summarizing

Summarizing

Our statement of bivariate hypergeometric series is the translation of the general combinatorial structure on the A-side (which also provides statements for the generalization to any number of variables)

Summarizing

Our statement of bivariate hypergeometric series is the translation of the general combinatorial structure on the A-side (which also provides statements for the generalization to any number of variables)

Summarizing

Our statement of bivariate hypergeometric series is the translation of the general combinatorial structure on the A-side (which also provides statements for the generalization to any number of variables)

The study of A-hypergeometric systems provides a general framework under which we can treat many systems that had been studied separately in the literature.

Summarizing

Our statement of bivariate hypergeometric series is the translation of the general combinatorial structure on the A-side (which also provides statements for the generalization to any number of variables)

The study of A-hypergeometric systems provides a general framework under which we can treat many systems that had been studied separately in the literature.

Questions

- Describe all algebraic Laurent series solutions for Cayley configurations (in progress)
- How to prove the conjectures beyond dimension/codimension two? There exists a characterization of normal configurations A for which all solutions are algebraic ([Beukers '10]), certainly for non integer parameter vectors β. New techniques are needed.

Summarizing

Our statement of bivariate hypergeometric series is the translation of the general combinatorial structure on the A-side (which also provides statements for the generalization to any number of variables)

The study of A-hypergeometric systems provides a general framework under which we can treat many systems that had been studied separately in the literature.

Questions

- Describe all algebraic Laurent series solutions for Cayley configurations (in progress).
- How to prove the conjectures beyond dimension/codimension
two? There exists a characterization of normal configurations A for which all solutions are algebraic ([Beukers '10]), certainly for non integer parameter vectors β. New techniques are needed

Summarizing

Our statement of bivariate hypergeometric series is the translation of the general combinatorial structure on the A-side (which also provides statements for the generalization to any number of variables)

The study of A-hypergeometric systems provides a general framework under which we can treat many systems that had been studied separately in the literature.

Questions

- Describe all algebraic Laurent series solutions for Cayley configurations (in progress).
- How to prove the conjectures beyond dimension/codimension two? There exists a characterization of normal configurations A for which all solutions are algebraic ([Beukers '10]), certainly for non integer parameter vectors β. New techniques are needed.

The End

Thank you for your attention!

[^0]: and 52 sooradic casses.

